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AMBIGUITY AND UNCERTAINTY IN PROBABILISTIC INFERENCE

The literature on how people make judgments under uncertainty is large,
complex, and rife with controversy (see e.g., Edwards, 1954, 1968; Peterson &
Beach, 1967; Slovic & Lichtenstein, 1971; Rappoport & Wallsten, 1972; Slovie,
Lichtenstein, & Fischhoff, 1977; EBinhorn & Hogarth, 1981; Xahneman, Sloviec, &
Tversky, 1982; Cohen, 1982; Kyburg, 1983). One reason for the controversy is
that while there is agreement that “"uncertainty” is a crucial factor in
inference, there is much less agreement about its meaning and measurement (cf.
Tversky & Kahneman, 1982). In particular, while most psychological work on
inference has been guided by a Bayesian or subjectivist view of probability,
increasing concerns have been expressed about this position (e.g., Cohen,
1977; shafer, 1978). Central to the Bayesian view is the idea that prob-
ability, which is a measure of one's degree of belief, can be operationalized
via choices amongst gambles (Savage, 1954). Thus, if two gambles have
identical payoffs but one is preferred to the other, it follows that the
probability of winning is greater for the chosen alternative,

The subjectivist view of probability gains much of its force by making
expressions of uncertainty operational via choices amongst gambles. However,
whereas probability is thereby defined precisely, does this procedure capture

the essential psychological aspects of uncertainty? In particular, how valid

is the assumption that expressions of uncertainty can be captured through
choices amongst gambles? An important and direct attack on this assumption
was put forward by Daniel Ellsberg (1961) and we examine his arguments below,
In doing so, however, we stress that our intent is to understand the psycho-

logical bases of uncertainty rather than to critique the normative status of

the Bayesian position.
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Bllsberg (1961) used the following example to show that the uncertainty
people experience has several aspects, one of which is not captured in the
usual betting paradigm: Imagine two urns, each containing red and black
balls. In urn 1, there are 100 balls but the proportions of red and black are
unknown; urn 2 contains 50 red and 50 black balls. Now consider a gamble such
that, if you bet on red and it is drawn from the urn you get $100; similarly
for black. However, if you bet on the wrong color, the payoff is $0. Imagine
having to decide which color to bet on if a ball is to be drawn from urn 1;
i.e., the choices are red (R,), black (81). or indifference (I). What about
the same choices in urn 2; (Ry), (B3}, or (I)? Most people are indifferent in
both cases, suggesting that the subjective probability of red in urn 1 is the
same as the known proportion in urn 2--namely .5. However, would you be
indifferent to betting on red if urn 1 were to be used V8. betting on red
using urn 2 (R; vs. R;)? Similarly, what about By vs. B,? Many people find
that they prefer R, over Ry even though their indifference judgments within
both urns imply that, P(R;) = p(R;) = .5. Purthermore, the sams person who
prefers R, over Ry may also prefer B, over By. This pattern of responses is

inconsistent with the idea that even a rank order of probabilities can be

inferred from choices. Thus, if Ry is preferred over Ry, this implies
that p(Ry) > p(Ry). Moreover, since red and black are complementary events, ‘_w
this means that p(Bz) < p(B‘). However, if B, is preferred over B,, then -—n
P(By) > p(B,), which contradicts the preceding inequality. It is also impor- ‘:1
tant to note that if p(R,) > p(R,) and p(By) > p(B,), then either urn 2 Qq
has complementary probabilities summing to more than 1 (super-additivity), or, -;—:
urn 1 has complementary probabilities gsumming to less than 1 (sub-additivity). q__;
Although Ellsberg did not specifically discuss the non-additivity of comple- E,-i
mentary probabilities (cf. PFellner, 1961), we shall show that it is intimately ';____1
e
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related to the effects of Adifferent types of uncertainty on probabilistic
judgments.

From our perspective, the importance of Ellsberg's paradox lies in the
difference in the nature of the uncertainty between urns 1 and 2. In urn 1,
whereas one's best estimate of the proportion may be .5, confidence in that
estimate is low. In urn 2, on the other hand, one is at least certain about
the uncertainty in the urn. While it may seem strange, and even awkward, to
speak of uncertainty as being more or less certain itself, such a concept
captures an important aspect of how people make inferances from unknown, or
only partially known, generating processes. Indeed, the idea of uncertainty
about uncertainty has been considered from time-to-time under the rubrics,
“second-order” uncertainty and probabilities for probabilities (e.g.,
Marschak, 1975). However, whereas this concept has received little support
amongst subjectivist statisticians (see e.g., de Finetti, 1977), its status as
a psychological factor of importance for understanding choice and inference
has been demonstrated experimentally (Becker & Brownson, 1964; Yates &
Zukowski, 1976). On the other hand, the process by which such second-order
uncertainty is used in inference and the factors that affect its use, have not
been systematically studied. To be sure, Ellsberg suggested a number of vari-
ables that should affect the "ambiguity” of a situation, including the amount,
type, reliability, and degree of conflict in the available information.

Indeed, he stated,

Ambiguity is a subjective variable, but it should be possible
to identify ‘'objectively' some situations likely to present
high ambiguity, by noting situations where available informa-
tion is scanty or obviously unreliable or highly conflicting;
or where expressed expectations of different individuals differ
widely; or where expressed confidence in estimates tends to be
low. Thus, as compared with the effects of familiar production
decisions or well-known random processes (like coin-flipping or
roulette), the results of Research and Development, or the per-
formance of a new President, or the tactics of an unfamiliar
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opponent are all likely to appear ambiguous. (1961, pp. 660-
661).

To specify the concept of ambiguity more precisely, reconsider the urn
where the proportion of red and black balls is unknown. From a Bayesian

perspective, this situation can be thought of as one in which the judge has a
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diffuse prior over all possible values of the proportion, PpP(R). However,
imagine that one sampled four balls (without replacement) and got 3 red and 1
black. Note that this result rules out certain values of p(R) and could

l change one's assessment of other values of p(R). Furthermore, as the sample
size increases, one should become more sure as to the actual value of p(R).

Therefore, as information increases, ignorance (a uniform distribution), gives

way to ambiguity (a non-uniform distribution over all outcomes), which then
reduces to a known p(R). However, while it is tempting to equate ambiguity
with sone statistical measure of the dispersion of the subjective distribu-
I' tion, this is unsatisfactory for the following reason: consider an urn that
i; contains either all red or all black balls but you don't know which. 1In such
ﬁ a case we can characterize the distribution over p(R) as having half its
i mass at zero and half at one. Note that the variance or range of this
ii distribution is high, yet, ambiguity is low. The reason is that such a
Ei distribution rules out all values of p(R) other than 0 or 1 and is thus
E; close to the case vhere ambiguity doesn't exist (as in urn 2). Therefore, in
E: accord with its dictionary definition, "having two or more possible meanings,”
ﬁ: ambiguity is a function of the number of alternative parameter values that are

) not ruled out (or made implausible) by one's knowledge of the situation. Note

< that this definition is similar to, but not identical with, statistical

O L SUSHRINEROSNES 4'

measures such as variance, range, and the like.
It is important to note that sample size is only one factor that

influences ambigquity since other information can affect the probability
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distribution over the parameter of a stochastic process. Thus, imagine an urn
factory where employees color balls by throwing them at two adjacent cans of
black and red paint from a distance of 20 feet. Given our knowledge of this
process, it seems fair to expect that an urn of 100 balls would not contain
extreme proportions of red or black. A second example, due to G;rdon!Ots and
Sahlin (1982), is particularly f{lluminating on this issue:

s« « o consider Miss Julie who is invited to bet on the cutcome
of three different tennis matches. As regards match A, ghe is
very well-informed about the two players . . . . Miss Julie
predicts that it will be a very even match and a mere chance
will determine the winner. 1In match B, she knows nothing what-
sosver about the relative strength of the contestants . . . and
has no other information that is relevant for predicting the
winner of the match. Match C is similar to match B except that
Miss Julie has happened to hear that one of the contestants is d
an excellent tennis player, although she doaes not know anything D...
about which player it is, and that the second player is indeed e
an amateur so that everybody considers the cutccae of the match
a foregone conclusion. (pp. 361-362).

Note that the amount and type of information in the three situations is quite

different, as is the amount of ambiquity (we would argue that match A has the
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least ambiguity and match B the most). From our perspective, how does the
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amount and type of ambiguity affect judgments of the probability of winning or

losing the match? Would Miss Julie, for example, judge that each player in

the three matches has a .5 chance of winning (or losing)?

Our discussion so far has implied that ambiguity is generally avoided
since it adds to the total uncertainty of a situation. Indeed, this is
explicitly mentioned by Ellsberg (1961, p. 666) in discussing why new ;'E;T
technologies will be resisted more than one would expect on the basis of their '
first-order probabilities. However, this picture is not completely accurate,
as is made clear by another Ellsberg example (as quoted in Becker & Brownson,
1964, pp. 63-4, footnote 4): consider two urns with 1000 balls each. In urn

I, each ball is numbered from 1 to 1000 and the probability of drawing any
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number is .001. 1In urn II, there are an unknown number of balls bearing any

single number. Thus, there may be 1000 balls with number 687, no balls with
this number, or anything in betwsen. If there is a prize for drawing number
o 687 from the urn, would you prefer to draw from urn I or urn II? Note that
Il urn I has no ambiguity and each numbered ball has the same .001 chance of

being drawn. Urn II, on the other hand, can be characterized as inducing

:3 extreme ambiguity (i.e., ignorance). However, for many people, the drawing

.i from urn II seems considerably more attractive than from urn I, thereby
implying that there are situations in which ambiguity is preferred rather than
avoided., This is considered in detail later, but we note here that accounting

for such shifts is an important criterion for judging the adequacy of any

B o UL

theory of inference under ambiguity.

Finally, the concepts of ambiguity, second-order uncertainty, and the
like, have been of concern in theories of inference quite apart from their
role in affecting choice. FPor example, work on fuzzy sets (Zadeh, 1978),
Shafer's theory of avidence (1976), Cohen's (1977) attempt to formalize
uncertainty in legal settings, and the slicitation of probability ranges
(Wallsten, Forsyth, & Budescu, 1983), all contain ideas concerning the
vagueness that can underly probabilities. Indeed, statisticians have provided
axiomatic systems for trying to formalize probability ranges and rank orders
rather than specific values (e.g., Koopman, 1940). Moreover, early work by
Keynes (1921) also addressed the notion of ambiguity by distinguishing between
probability and what he called the “weight of evidence.” Keynes stat;dz

The magnitude of the probability. . .depends upon a balance -
between what may be termed the favourable and the unfavourable . SR
svidence; a new piece of evidence which leaves this balance S
unchanged, also leaves the probability of the argument unchanged.
But it seems that there may be another respect in which some kind

of quantitative comparison between arguments is possible. This " ”4
comparison turns upon a balance, not between the favourable and

unfavourable evidence, but between the absolute amounts of o
- A
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relevant knowledge and of relevant ignorance respectively.
(Xeynes, 1921, p. 71, original emphasis).

Plan of the Paper
We first present a descriptive model of how people make probability judg-

ments and choices under varying amounts of ambiquity. We require that our

DY OONIER

model be able to: (1) Explain the pattern of choices elicited by Ellsberg's

problems. This, in turn, implies that the model account for sub-and super-

L
. additivity of the probabilities of complementary events; (2) specify the
g' conditions under which people will geek as well as avoid ambiguity; (3) allow

for individual differences; and (4) be empirically testable. To meat e
E criteria, the model is tested in four experiments at both the aggrer and
~ individual subject levels. Two of the experiments concern inferenc ¢ s,

and two involve choices. The implications of the theory and empirical work

are then discussed in relation to: (a) the importance of ambiguity in
assessing perceived uncertainty; (b) the use of cognitive strategies in
understanding probabilistic judgments under ambiguity; (c) the role of
ambiguity in risky choice; and (d) extensions of the model to multiple sources

and time periods.

':_; A Descriptive Model

Our model postulates an "anchoring and adjustment" strategy for assessing

probabilities., This involves an initial estimate, denoted Ppr and an
P, adjustment to reflect the ambiguity in the gituation, Thus, the ansuing
judgment, S(p,), is given by,

S(PA) =py +k (1)

where Xk 1s the net effect of the adjustment process. To model the adjust-

ment process, we propose that people engage in a mental simulation in which
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other values of p are considered by imagining how well they express one's

uncertainty. These simulated values are then incorporated inﬁo the adjustment

term. The rationale for the simulation is that in ambiquous situations, p

- can be any one of a number of values. By incorporating the range of possible
values of p into their judgments, people can maintain sensitivity to both
uncertainty and ambiquity.

5 We further argue that k, the net effect of the simulation, will be

: affected by three factors: (1) The level of Pp7 that is, since S(p,)

varies between 0 and 1, equation (1) implies that P, < k< (1.9A)' This

means that the direction of the adjustment must be due, in part, to the value

of P Indeed, when B = 0, x » 0, and the adjustment (if there is one)

must be upward; when Ppa=1 k< 0, so that the adjustment must be downward;

when Py # 0, 1, adjustments can be up or down; (2) the amount of ambigquity

perceived in the situation. We denote this by a parameter &, which

determines the absolute size of the adjustment, i.e., the larger 0, the

O
s’ .

larger the adjustment; (3) the person's attitude toward ambiguity in the

il S
a8 2 a's

circumstances. This is reflected in the tendency to give differential
attention or weight to values of p that are greater or smaller than the
initial estimate, Pp- One's attitude toward ambiguity is denoted by 8, and
this parameter, together with Par determines the sign of the net effect of
the adjustment, i.e., when k is positive or negative,

To model the adjustment process algebraically, let

1

k =k -k, (2)

where kg denotes the effect of imagining values of p greater than the
initial estimate, and ks the effect of imagining smaller values. How does
; perceived ambiguity affects these quantities? To answer this, consider Figure

1, which shows the position of Py relative to the end points of 0 and 1.
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Insext Figure 1 about here

Note that the maximum upward adjustment to Pa is (1 - p,) and the maximum
downward adjustment is p,. If we restrict the range of © to the unit
interval (0 < ©< 1), then maximum adjustments would occur under complete
ambiguity (6 = 1), and zero adjustments under no ambiguity (0 = 0). This
suggests that the effects of simulating values greater and smaller than Pa
(kq and ks' regspectively), can be represented as proportions of the maximum

adjustments where O 1is the constant of proportionality, i.e.,

kg = e(1-pA) (3a)
and ks = Ggh (3b)

The development so far ignores the posgibility that greater and smaller
values than p, could be differentially weighted., For example, in estimating
the chance of an accident ia a new technology (high ambiguity), one may start
with the estimate offered by the engineering department and then weight larger
values of p(accident) more than smaller ones. To account for diffsrential

weighting effects, we need only weight either k_ or kg to affect k., Por

g
convenience, we weight kg (rather than kg) by B as follows,

B .
k' - egh (8 > 0) (4)

Thus, the net effect of the adjustment process is given by,

k = kg -k (5)

- 9(1-pA-pi) .

when (5) is substituted into (1), the full model becomes,

3(9A) =p, * 9(1-pA-pg) (6)
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(1 = p,)
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Figure 1. Anchor of Py and range of adjustments.
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We make several points with respect to equation (6). First, note that

© affects the absolute size of the adjustment factor. That is, when there is
i no ambiguity, © = 0 and S(p,) = p,. Thus, © can be thought of as having

‘ a magnifying or dampening effect on one's attitude toward ambiguity in the

{ circumstances, (8). PFor example, if perceived ambiguity is small, the

E tendency to weight differentially values of p above and below p, is of

i little consequence.

- Second, S(p) 1is regressive with respect to p. This can be illustrated

by considering the effects of different values of B in equation (6).

Specifically, the three panels of Figure 2 illustrate “"ambiguity functions"
with 8<¢1, 8>1, and B8 =1, (0 is shown to be the same in all three

cases,) It is important to note that each value of B defines a unique

Insert Figure 2 about here

"cross-over" point, p,, where S(p) = p. Thus, in Figure 2a, B defines
Pey such that small probabilities are overweighted and larger probabilities

underweighted. This form of the function results because 8 < 1 implies that

more weight is given to smaller values of p rather than larger ones, There-
fore, k < 0 over most of the range of p. However, when p, < p,;, there
are few smaller values of p to consider relative to larger ones. Thus, aven
when smaller values are weighted more heavily than larger ones, there are more
of the latter and k > 0. Conversely, when 8 > 1, as shown in Figure 2b,
S(p) > p over most of the range of p since more weight is given to larger
as opposed to smaller p's. However, when Pp > Pcar S(p) < p since there

are few larger values and k < 0. Finally, note that in Figure 2c¢, when B8

= 1, the cross-over point is at .S.

Third, equation (6) implies the conditions under which probability

judgments of complementary events are additive (sum to one). Specifically,
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consider the sum of S(p,) and S(1-p,). This is,
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s"a) + S(1°PA) b e(l-pa-p:) + (1'93) + 6[1-(1-pA) - (1-95)6]

Py

(7)

AN

=14 9[1-p: - (1-pA)B]

Thus, complementary probabilities are additive if: 0 =0, or B =1, or Pa
= 0, 1; otherwise, there is sub-additivity if B < 1, and super-additivity if

B> 1.

Fourth, there are many ways we could have chosen to incorporate the £ AR

pzﬁ parameter in the model. However, not all forms have the same implications,
: particularly with respect to the additivity of complementary probabilities.
ﬁ; We consider several alternative models in Appendix A. ‘—ﬁ
- To summarize, the model has two parameters and both are functions of

L individual and situational factors. The O parameter reflects perceived

ambiguity and the degree to which one simulates values of p that "amight
be.” However, situational factors are also likely to affect © (across

- people); e.g., the absolute amount of evidence available, the unreliability of

sources, lack of causal knowledge regarding the process generating outcomes,
jj and 8o on, The £ parameter reflects the extent to which one differentially
weights in imagination possible values of p that are smaller vs. larger

than Pa* As such, £ may be related to an optimism-pessimism attitude at

!

'
a4

- the individual level. However, we argue that B will also be influenced by

...-
ettt
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X situational variables such as the sign and size of the payoffs that are

.
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contingent on the ambiguous probability. Por example, if the general effect

of ambiguity is to induce caution rather than riskiness, the prospect of an

S IR AN
{

undegirable outcome (e.g., monetary losses) would induce people to pay more

gx

S O

. l.

. attention in imagination to values of p(Loss) that are larger than Pa’

similarly, the prospect of a gain would focus attention on smaller values of




p(Gain). We consider this issue further in connection with experiments 3 and 4.

We now consider how the model in (6) explains Ellsberg’'s original results.

."n:". /DDA

Py
(X
LN

Note Pigure 2a, where © > 0 and B8 < 1. A person with parameter values in

Sy

these ranges will "underweight” all Pa above Per amd "overweight® p, <

aae g

Pee This particular pattern explains why most people in Ellsberg’'s urn

example avoid the ambiguous urn 1; that is, S(p, = «5) ¢ .50, Howaver, note

that if p, is less than Per 8(P,) > p, and one would expect the same
person who avoided the ambiguous urn when p, = .5, to prefer the ambiguous
urn when p, 1is sufficiently low (e.g., when p, = .001). The pattern of
overweighting small p, and underweighting moderate-to-large p, also
accounts for some otherwise puzzling results of Goldsmith and Sahlin (as
reported in Gardenfors & Sahlin, 1982). They presented subjects with
descriptions of either well-known events (e.g., drawing cards from a standard
deck), or events about which the subjects had little knowledge (e.g., the
likelihood of a bus strike in Verona, Italy next week). Subjects estimated
J the probabilities of the events and the perceived reliability of their
probability estimates. Events with equal probabilities but unequal reli-
abilities were then used in a lottery set-up. The authors report that,

; e o o« £2r probabilities other than fairly low ones, lottery

tickets involving more reliable probability estimates tend to be
preferred. (Gardenfors § Sahlin, 1982, p. 363, our emphasis,)

While the pattern shown in Figure 2a accounts for much data, it dces not
5 explain why some people in the Ellsberg task prefer to bet on drawing from the
' ambiguous urn when Py = «5. However, consider a person with an s(pn)
function as shown in Pigure 2b., When © >0 and 8 > 1, one gets "ambiguity
preference” ovaer most of the range of pp+ Thus, vhen p, < p., S(pp) > Py
and overweighting occurs; when Pp > Per S(PA) < pp and underweighting

A occurs. Since individual differences are rarely accounted for in research on
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decisions under uncertainty, our model has the distinct advantage of positing
a general psychological process while allowing for individual differences via
particular parapeter values. Indeed, this is nicely illustrated by consider-
ing people who are indifferent between gambles from ambiguous and unambiguous

urns vhen p, = .5 (as in the Ellsberg case). Our model suggests two

distinct types: those for whom O = 9, and thus, s(pA) = pp; and those
for vhom O >0 and B8 = 1 (shown in Figure 2c). This latter group does not
ii adjust at p, = .5, but does adjust at all other values. Therefore, people
13 characterized by these parameter values will only be indifferent between
lotteries at .S5.

Finally, we note that our model is relevant to a major psychological
theory of risk; namely, “prospect theory” (Kahneman & Tversky, 1979). From

our perspective, the treatment of uncertainty in prospect theory is consistent

with our approach since a decision-weight function is posited that is remark-
ably similar to the S(p,) function shown in Figure 2a. This is not a
coincidence since, as Kahneman and Tversky specifically point out, decision
weights can be affected by ambiguity. Indeed, they state,

The decision weight associated with an event will depend
primarily on the perceived likelihood of that event, which could
be subject to major biases. 1In addition, decision weights may be
affected by other considerations, such as ambiquity or

vagueness. Indeed, the work of Ellsberg and Fellner implies that
vagueness reduces decision weights. (p. 289)

While our equation (6) could be made fully compatible with the decision-weight
function of prospect theory (by restricting its applicability to 0 < p < 1

and thereby not defining the end point:s),1 we wish to emphasize that (6)

expresses a class of functions. Therefore, while the decision-weight function
of prospect theory expresses a gensral tendency to treat uncertainty in a
particular way, (6) allows for both situational variables and individual

differences in the handling of uncertainty.
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EXPERIMENTAL TESTS OF THE MODEL

To test our model empirically, we employed two tasks that focused on
inference (experiments 1-2) and two dealing with choice (experiments 3-4). 1In
the inference task, people were asked to make probability judgments on the
basis of numbers of reports from a source. 1In experiment 1, we examined the
various implications of equation (6). In experiment 2, we used different
scenarios to manipulate © in both a between and within-subjects design. 1In
addition, the consistency of individual differences in strategy (as measured
by a person's © and B parameters) was also considered. Experiment 3
involved an attempt to answer the question: Can an individual's choices
between gambles be predicted from knowledge of his or her @ and B8
parameters obtained from a separate inference task? Finally, in experiment 4,
people were agsked to be either buyers or sellers of insurance in ambiguous and
non-ambigquous situations. Differences between buying and selling prices were
then investigated as a function of assumed differences in B parameters.
Since experiments 1-3 are all based on the same type of inference task, we
first explicate the underlying nature of this task, noting how it differs from

other probabilistic tasks considered in the literature.

A Model for Studying Ambiguity in Inference

The prototypical inference that we consider involves a judge assessing
the likelihood of the occurrence of an event based on reports received from
a source of limited reliability. The task can be thought of as having the
elements schematically represented in Figqure 3. (1) An event occurs;

(2) The event is "gsensed" by observers (e.g., witnesses to an accident) who,

Insert Pigure 3 about here
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é in principle, can be characterized by levels of sensitivity and bias. How-
i ever, it is important to emphasize that these levels are unknown to the judge
: (see 5 below); (3) The observers report what they saw. Ve denote A* as the
: report of svent A, and B* as the report of event B, where the decision rule
l is to report A* if the observation is above some critical value X., and
B* otherwise. The reports can therafore be conceptualized as coming from a
. signal-detection task; (4) Since there are n observers, n reports are
l collected. Thus, the n reports can be thought of as the ocutcomes of n
obgservers reporting on a single trial of a signal detection task. Further-
more, since we do not differentiate between the n observers, we refer to
- ther as coming from a single source; (5) The judge receives the information in
the form of £ reports for a hypothesis (i.e., f reports of A*) and c¢
reports of an alternative (i.e., c reports of B*), where f+«c = n, and p =
£f/n. The content of the scenario, however, is assumed to give the judge some
information as to what values of p to expect in a sample of size n.
Specifically, we argque that expectations concerning p will be influenced by,
(a) the dissimilarity between events A and B; and (b) the credibility of the
source. By "credibility” we mean the sensitivity and response bias of the
observers in judging the particular events of interest. For example, imagine
that you are a detective investigating a bank robbery where two witnesses
E claim that the robber has blond hair and one witness claims it is brown., How
likely does the robber have blond hair? While the detective knows neither the

) hit and false alarm rates of the witnesses, nor their response bias for saying

E "blond” vs. "brown,” he may know something about the quality of eye-witnesses

in a robbery, the confusablility of blond and brown in the circumstances, and

~ perhaps something about the motivation of the witnesses. Now contrast this

; situation where the source is two color television cameras that were filming
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the robbery at the bank. Whereas in the former case the detective would
expect the reports to conflict (i.e., 0 < p < 1), in the latter it would be
surprising if p were not equal to either 0 or 1.

Note that in Pigure 3, we have represented the judge’s expectations by
three different distributions. 1In distribution (1), the information about the
credibility of the source, the dissimilarity of the signals, and the size of
the sample, does not rule ocut many values of p. This is a highly ambiguous
situation and would, for example, characterize the detective trying to judge
evidence from witnesses. Distribution (2) characterizes expectations based on
a highly credible source that discriminates between dissimilar signals; e.q.,
evidence from cameras filming the robbery. We believe that ambigquity is low
here since ocur knowledge of the process that generates evidence rules out most
values of p. Distribution (3) also represents a situation of low ambiguity,
but it is quite different from (2). Indeed, (3) is likely to result when the
credibility of the source is particularly low and/or the signals are very
similar, in direct opposition to the conditions that produce (2). For
example, imagine a taste-test between Pepsi vs. Coke for randomly chosen
shoppers. 1If we believe that the two drinks have a very similar taste and
that most shoppers are not able to tell the difference, we would expect the
proportion of reports for either product to be around .5. Thus, results from
such a test might be seen as most closely resembling the drawing of balls from
an urn with xnown p = .5, It is interesting to note that whereas some
authot; have equated increased rellagility of evidence with less ambigquity (as
suggested by Ellsberg, for example), distribution (3) shows that decreased =
reliability can also lead to low ambiguity. Another way to express this is to :45}
note that high reliability implies low ambiguity (distribution (2)), but low

ambiguity does not imply high reliability (since distribution (3) could be
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event occurred.
" Third, one might consider our situation as a conventional Bayesian
:::\ revision task (cf. Edwards, 1968). However, the explicit probabilities
i necessary to assess the likelihood functions are not provided; and, no base-
rate data or prior probabilities are stated, It would, of course, be possible
,. to provide the judge with explicit prior probabilities. This would, however,
; be extending our paradigm to one where multiple sources of information need to
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involved); (6) The judge combines the information from the reports with
expectations about p to reach an assessaent of the likelihood of A.

The structure of this task is both similar to and different from several
probabilistic sodels of the inference process. First, it is similar to
cascaded inference in that the judge is making inferences about an avent
on the basis of unreliable reports (cf. Schum & Kelley, 1973; Schum, 1980).
However, in contrast to studies of cascaded inference, the judge does not know
the precise value of the source's reliability; rather, there is ambiguity
concerning what this is.

Second, since each observer can be thought of as participating in the
sane signal detection task, the reports not only reflect their sensitivity to
competing signals, but also their bias due to differential payoffs. However,
as recently esphasized by Birnbaum (1983), the manner in which the judge
treats the observer reports depends on some theory about the observers. Por
example, the observer reports could be responsive to the prior probabilities
of A and B as well as to differential payoffs. We emphasize that in our task
the judge is not given precise information about these matters. Purthermore,
since the judge only receives information on a single trial, the observers’
hit-rate and false-alarm rate are not known. Instead, the observed p, and

the judge's expectations about p, becoms cues to the likelihood that the
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be combined, i.e., base-rates and individuating information. FPFor the sake of
simplicity, we only consider the effects of ambiguity on inferences from a
single source and thus do not discuss the effects of explicit base rates
(extensions of our model to multiple scurces is considered in the Discussion
section).

In this model, note that we have exnlicitly recognized three sources of
ambiguity, viz: (a) the dissimilarity between events A and B; (b) the credi-
bility of the source; and (c) the number of reports, or sample size, n.
Specifically, when n is small, one would expect ambiguity to be high;
however as n increases, we would expect ambiguity to decrease. Thus, to
incorporate the effects of n explicitly in our model, let 6 = 8°/n such

that,

S(f:c) = Py +:—- (1 P - p:] (8)

where S(f:c) = judged probability, and Py = f/n. That is, in judging the
probability of an event based on f reports “"for” and ¢ “con," people are
assumed to anchor on f£/n, and then adjust for the unreliability of the source
and the amount of data. The model in equation (8) has several implications:
(1) Consider the effect of the amount of information (n) on judged likeli-
hood. Note that § + ph as n + @, This means that as the amount of
information increases, one becomes more certain as to the diagnosticity of the
data. It is important to realize that as n + », S does not go to 0 or 1 as
would be implied by a standar? Bayesian revision model. Instead, the fact
that S asymptotes at p, parallels an analogous result in cascaded
inference where, under certain symmetry assumptions, the maximum probability

of a hypothesis is bounded by the reliability of the reporting source (Schum &

DuCharme, 1971).
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(2) Conditional on a given value of 0°, the model implies that there
will be trade-offs between p and n in determining judged likelihood. For
exanple, one might find the evidence in favor of some hypothesis to be more
convincing on the basis of (9:1) than (2:0). However, because S asymptotes
at p,, trade-offs of p and n will only occur at small values of n.

(3) Since © = 0°/n, n also affects the conditions underlying the

additivity of complementary probabilities. Specifically,

S(f:c) + S(c:f) = 1 + g:[1 - p: - {1 - ph)s] (9)
Thus, in addition to the additivity conditions discussed in regard to equation
(7), a8 n + », additivity will hold regardless of 0°, B, or Ppe Of
course, when n is small (meager data), adjustments will be substantial and
violations of additivity will be most likely.

Experiment 1 explicitly considers the role of n 4in equation (8),

vhereas factors affecting ©” are the central concern of experiment 2.

Experiment 1

Subjects. Thirty-two subjects were recruited through an ad in the
University newspaper which offered $5 an hour for participation in an
experiment on judgment. The median age of the subjects was 24, their
educational level was high (mean of 4.4 years of formal post-high school
education), and there were 16 males and 16 females.

Stimuli. The stimuli consisted of a set of scenarios that involved a
hit-and-run accident seen by varying numbers of witnesses. Moreover, of the
n witnesgses to the accident, f claimed that it was a green car while ¢

claimed it was a blue car. A typical scenario was phrased as follows:

An automobile accident occurred at a street corner in down-
town Chicago. The car that caused the accident did not stop
but eped away from the scene, Of the n witnesses to the
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accident, £ reported that the color of the offending car
was green, vhereas ¢ reported it was blue. On the basis of
this evidence, how likely is it that the car was green?

Each scenario was printed on a separate page and contained a 0-100 point

rating scale that was used by the subjeact to judge how likely the accident was
caused by a particular colored car. Each stimulus contained the same basic

=N story but varied in the total number of witnesses (n), the number saying it
was a green (f) or a blue car (c), and whether one was to judge the like-
lihood that the majority or minority position was true. In order to sample a
wide range of values of n and p, 40 combinations were chosen as follows:
forp=1, n=2,6, 12, 20; p= .89, n =9, 18, 27; p= .80, n = 5, 10, 15,
20, 25; p= .75, n=4; p= .67, n=3,6,9, 12, 15, 18, 24; p = .60, n = S,

10)9- oSO, n-z, 8, 12’ 20)" .40,!!-5, 10} p= 033'!‘-6' 9, 18)’

oo
PR T A
Chh

-.25, n-4lp-02°' n-S, 10}”.11.”‘9, 18;9‘0, n'z, 6, 12, 20.

] .

In addition, 8 stimull were given twice o ascertain test-retest reliability.

0
R
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Thus, the total number of stimuli was 48, and they were arranged in bocklet
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Procedure

1-0 .

when the subiects enterad the laboratory, they were told that the
experiment involved making inferential judgments. Furthermore, it was stated

that if they did well in the experiment (without specifying what this meant),
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it was likely that they would be called for further experiments. Given the
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relatively high hourly wage, this was thought to provide some incentive to

take the task seriocusly. In order to avoid boredom and to reduce the trans-

‘o

parency that judgments of complementary events were sometimes required,
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subjects were given 4 gsets of 12 stimuli and, after completing each set, they

performed a different task. All stimulli were randomly orderad within the four

sets. Subjects could take as much time as they needed and they were frae to
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make as many (or as few) calculations as they wished. After completing the
task, all subjects filled out a questionnaire regarding various demographic

variables.

Bstimating the Model
To estimate the model from the experimental data, we need to re-write
equation (8) and include a random error term to represent judgmental incon-

sistency; therefore,

S(f:c) = P, +-gf(1 - Py p:) + € (10)

Equation (10) requires a non-linear estimation technique which was developed
in the following way: 1let S(f:c) be the actual response of the subject
and §(t:c) the predicted response from the model. We wish to minimize some
loss function (we chose the mean absolute deviation, MAD), by finding values
of ©° and B such that,

R -
le(fsc) - s(f:c)l = minimun
N (11)

This was done by setting up a grid of values of ©° and B and vwriting a
computer program to first compute the MAD for pairs of "coarse" values of ©0°
and B. Since certain ranges of 0° and B8 can thus be excluded, the
program then considers "finer-grained” values until MAD 1is minimized.2 The
output from this analysis is a unique set of values for ©° and B8 that
minimizes the desired loss function.

Since the sampling distributions of 0° and B8 are not known, testing
the statistical significance of the model's fit to the data is problematic.
We therefore adopted the strategy of comparing the accuracy of ;(f:c) with
that of a model based solely on p,. Moreover, since p, is the anchor of

the assumed process, any difference between the accuracy of P, and S(f:c)
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can be attributed to the adjustment process, and thus to ©° and 8. We
emphasize that this procedure is biased against finding differences between

Pp and S(f:c) for two reasons: (a) the model predicts that S(f:¢c) + Py

as n increases. Thus, since we have included some large values of n ¢to

test this prediction, if S(f:c) = Pps this counts against, rather than for, %

the model; (b) the model further predicts that §(f:c) = p, at the cross-over -
point, p,, and will be close to p, in the region of p.. Again, if this -

occurs, it counts against the model. We take this highly conservative

approach to guard against attributing random error in the data to an

adjustment process.

Results

Before discussing the major results, recall that for each subject, 8

stimuli were given twice so that test-retest reliability could be assessed.

This was done in two ways: (1) the correlation between judgments of the same
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stimuli, within each subject (N = 8), was computed. The mean of these cor-
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relations was .93, with 26 of the 32 coefficients greater than .90; (2) each

[

subject was considered a replication with 8 responses and the correlation
between judgments for identical stimuli, over subjects (N = 256 = 32 subjects
x 8 responses), was .91. Clearly, the reliability of the judgments was high,
regardless of the computational method.

Por a general impression of how well the model fits the data, we first ?k
consider an aggregate analysis (individual differences will be considered in ;i
detail helow). For each of the 48 stimuli, the judgments from the 32 subjects 5%
were averaged to form the mean judged likelihood, 3(f:c). This was then used

as the dependent variable to be fit by the model. The parameter values -

obtained from the estimation program were, 0° = ,35, 8 = ,10 (implying

gc = ,16). In addition, the mean absolute deviation of model and data was o
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2;: 020, which i{s significantly lower than that of the baseline p,-model (MAD =
< .041; p < .001 using a Wilcoxon matched-pairs signed-ranks test).
To see whether the implications of the model hold, consider Teble 1,
which shovs B(fic) and 8(fic) for the 48 stimuli. Pirst, does
Insert Table 1 about here ‘" -3

S(f:c) +p, as n increases? The data strongly support this when p, = 1,

.67, .60, .50, .40, and O. At the values of .75 and .25, n was not varied .._...
S although the large adjustments do suggest that the expected effect would '
. occur. However, the effect of n is less clear at p = .85, .80, and .33
since there is little initial adjustment at small n. Taken together, these N
results suggest moderate support for the hypothesis. Second, do p and "“‘
n trade-off in affecting juiged 1ikelihood? The evidence here is quite
. convincing: e.g., note that 8(8:1) = .88 > 8(2:0) = .85, 8(10:5) = .65 >
- S(3:1) = .63, S(1:4) = .21 > 8(1:3) = ,20. Of particular interest is the -r-
result that S(0:2) = .16 > 8{1:8) = .12, This means that when there is
limited evidence, no data in favor of a hypothesis can be judged as stronger ‘ -
evidence for that hypothesis than when more evidence is available with mixed :
support. Third, an important implication of the model concerns the relation :-_
between O, 8, and the additivity of complementary probabilities. Recall :-
3 from equation (7) that when © > 0 and B < 1, sub-additivity is predicted -
2 for 0 < py < 1. To test this prediction, consider Table 2, which gshows both
; 8(f:c) + 3(c:f) and g(fac) + g(czt). Note that there is subgtantial sub-
= additivity and the model does a reasonably good job of capturing it. 1In N
: Insert Table 2 about here ,‘
e N
judging the performance of the model in this regard, it is useful to remember j?
: that we have gone beyond the qualitative prediction that sub-additivity will ——
%
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TABLE ]

Fit of the Model for Aggregate Data

~ T a .

n
2
6

12
20

]
.85
<92
«96
«95

.83
94
«97
«98

9
18
(18)
27

(.89)
+89

.88
.37
(.85)
«87

.86
.87
«87
.88

5
(9
10
15
20
25
{25)

(.80)
-80
.80
'80
.80

(.80)

.80
(.73)
<79
81
«80
.82
{.80)

.75
.75
77
.78
.79
.79
.79

4

«75

«63

«69

3
( 3)
6
( 6)
9
12
15
18
24

.67
(.67)
.67
( -57)
67
.67
.67
.67
067

«61
(.59)
«62
(.63)
«61
«64
«65
«63
+66

60
«80
63
83
.85
.65
«66
«66
86

5
10

«60
«60

.53
.58

.56
.58

2
8
(8)
12
20

50
.S0
(.50)
«50
.50

45
44
(.47)
«47
«47

42
.48
48
-49
+49

5
10

-40
«40

«36
-39

.38
«39

6
( 6)
9
18

«33
«33)
.33
«33

Ll

N
(.29)

27

«29

32
32
«32
«33

4

«25

«20

«24

S
10
(10)

.20
«20
(.20)

21
o119
(.18)

«20
.20
«20

9
18

11

.12
«13

11
11

2
6
12
20

O 0 O o

.16
.07
.06
=24

17
006
.03
.02

Note:s Numbers in parentheses are for the repeat judgments.
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TABLE 2

Sub-additivity for the Aggregate Data
a Actual Predicted
'L P (1 - py) n S(f:¢c) + S(c:f) S(f:¢c) + S{c:f)
1 0 2 1.01 1.00
1 o 6 99 1.00
: 1 0 12 1.01 1.00
-89 11 9 1.00 «97
-89 o1 18 1.00 .98
(.89) (.11) (18) (.98) .98
.80 «20 5 1.01 «95
.80 «20 10 «98 «97
75 25 4 «83 «93
87 33 6 «92 «9S
(.67) (.33) (6) (.92) <95
«67 33 9 .88 97
87 «33 18 «92 «99
80 «40 S -89 94
60 -40 10 «97 «97
2 .50 .50 2 .90 .84
‘.' .50 Oso 8 .88 .96
i (.SO) (.50) (a) (094) '96 -0 ;
- .50 .50 12 .95 .98 3]
. .50 .50 20 .94 .98 3
o)
e - - - - - _\._\
2. O
- o]
-, :'-:‘. -2
. Note: MNumbers in parentheses are for the repeat judgments. T
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be p:.'.esont in the data, to specifying both the amount of the effect and the
conditions under which it will not be present. Given these goals, we view the
results as supporting our model. Moreover, note that the baseline pp-model
would always predict perfect additivity and thus does not describe these data

well,

Individnal Analyses
Since each subject rated all stimuli, we can fit the model for each

person. These results are shown in Table 3. The table indicates substantial

Insert Table 3 about here

individual differences in the parameter values and the degree to which the
model fits the data (as indicated by the MAD's), When compared with the
aggregate analysis, the individual models contain considerably more noise
(recall that the MAD for the aggregate data is .020). Furthermore, in
comparing each subject's model against the baseline Pp-model, 14 of the 32
subjects showed no significant adjustment process, as specified by our model,
while 18 did. The reason for the emphasis is that no subject, even those for
vhom 3‘ = 0, used a strict pp-strategy (i.e., S(fic) = p, for all p,
and n). Instead, some used Py most of the time but occasionally adjusted

for n at p, =0 and 1, while others had no clearly discernible strategy.

This helps to explain why the MAD for subjects with é- < .10 4is not close to

zero, as would be expected if they simply used p, for making their :}::
~ judgments. Indeed, subject 6 (0° = .02) had the highest MAD of the 32
,T subjects. Thus, there seem to be idiosyncratic ways of making probability ‘—j
" judgments that are not captured by equation (8). ]
, The above should not detract from the fact that a majority of subjects 1

did show a significant adjustment in accord with the theory. We illustrate =9
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TABLE 3

Pt of the Model for Individual Subjects

Ss 9 8 P, MAD
o 1 «00 -~ - .051 ns
_-.Z 2 ooo -~ - 0062 ns
\: 3 .02 ) .03 .002 ns
s 4 .02 o4 .20 025 ns
S 02 «20 24 «040 ns
- 6 .02 .23 .27 «113 ns
B 7 .08 .00 .00 .007 ns
- 8 .10 1.00 .50 .052 ns
- 9 .11 W11 17 025
a2 10 .13 «02 .06 037 *
= 1" .15 .00 .00 081 *
- 12 7 .04 .09 069 *+
13 .24 .01 .03 .051 ns
= 14 .24 .21 .25 031 ns
- 15 .28 10.90 .84 051 wan
- 16 .30 60.00 .95 «052 ns
17 .36 .01 .03 «052 weas
18 .36 1,00 .50 ,030 e«
19 .37 .02 .06 077 e
20 .37 .08 14 «033 ean
21 37 012 .18 010 ns
22 .42 .04 .09 «079 ns
23 .42 .14 20 «057 ns
24 .44 .06 12 s027 waw
25 .48 .02 .06 .088 ¥
26 .50 .01 .03 <023 wee
27 .55 .02 .06 <046 wen
28 .64 o1 .17 s053 wan
29 .84 1.50 .57 070 *
30 .93 .89 .48 <069 was
3 1.34 .01 .03 089 wwe
32 1.83 .03 .08 o106 www
* p < .05 (Wilcoxon test) f
** p< .0
** p ¢ 001
ns not significant
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this by the results of five subjects, each representing a different com-

bination of ©° and B parameters. This is shown in Table 4. Subject

Insaert Table 4 about hgsg

26 illustrates the use of a highly consistent strategy in which downward
adjustments are made over almost the entire range of p. Subject 18 also has

a consistent strategy involving adjustments, but P, = .50, 1implying that

adjustaents will be down when p, > .5, up when p, < .5, and no adjustments

at p, = .5. The data conform quite closely to this pattern. Subject 15 has
& somewhat less consistent strategy of making small upward adjustments over
most of the range of p (;c = .84). Again, the data are generally consistent
with this interpretation. Subject 3 1is included for contrast since, as can
be seen, there was almost total reliance on p, (as would be predicted by the
';j parameter values and low MAD). Subject 32 is shown to illustrate the most

» extreme and least consistent adjustment process (which was generally

-~ downward). As is evident from the data, this subject had difficulty in

S5 "controlling” the adjustment process (cf. Hammond & Summers, 1972, on
"cognitive control"). This lack of consistency manifested itself in widely
different adjustments for the same stimuli as well as illogical judgments. An
i“i example of the latter was that evidence of (0:2) was evaluated as stronger
than (2:0) (i.e., .40 vs. .30). The lack of consistency and large amount of

adjusting that characterize subject 32 suggested that there might be a

o e
“l‘,»

A
. '

I )
N » » e "

positive relation between the size of ©° and MAD, over subjects. When we

investigated this, the correlation was r = .46 (p < .001). Thus, there seenms

to be a connection between the amount of adjustment and the ability to execute :?i

RSN

~}f it consistently. :i:

3 . -:':-‘1

Our final results concern the additivity/non-additivity of complementary "M

.. - —

" probabilities for individual subjects. This is illustrated using the subjects N
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e
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TARLE 4

Pit of the Model for Selected Subjects

Subject Suhject Subject Sabject Subject
26 s ns ” 92

- - - - -

a p 8 s s s s s s s s s
2 .80 .78 .70 .82 92 .86 99 .99 .30 .09
6 89 .92 89 .94 46 .98 99  1.00 .80 .70
12 1 97 .96 .90 .97 95 .98 .99  1.00 .80 .8S
20 1 98 .98 .88 .98 .08 .99 99  1.00 70 .9
s .9 83 .94 84 .86 84 .89 88 .89 90 .7
18 .09 84 .87 45 .87 87 .89 .89 .89 .80 .80
(18) .99 87 .87 .85 .87 87 .89 89 .89 .70 .80
27 .89 .05 .89 .82 .88 82 .89 .89 .89 .60 .83
s .0 J7 .80 .76 .05 .81 .80 .80 .60 .51
(10) .80 J2 .78 .80 .78 .83 .80 .80 .80 .90 .65
10 .80 76 .76 .80 .78 .84 .80 .80 .80 .80 .63
15 .90 g9 .7 9 .19 J4 .80 .80 .80 70 .70
20 .80 .76 .18 9 .19 72 .80 .80 .80 .60 .73
2s .90 76 .78 80 .79 .85 .80 .80 .80 .90 .74
(25) .80 6 .78 .80 .79 .76 .80 .80 .80 .70 .74
4 .78 .S7 .66 .65 .70 T2 .76 .66 .18 .30 .61
3 .67 ST .86 .64 .63 76 .70 66 .67 .20 .27
(3 .67 ) .36 8% .83 I3 .70 .66 .67 .20 .27
6 .67 59 .61 .65 .65 72 .69 .67 .67 60 .47
6 .67 ST .6 .65 .68 72 .69 66 .67 30 .47
9 .67 59 .63 65 .66 .65 .68 .66 .67 .30 .54
12 .67 .60 .61 64 .66 J2 .68 .66 .67 40 .87
15 .67 .62 .68 .65 .86 73 .68 .66 .67 .70 .59
1. .67 .63 .68 .65 .66 65 .68 87 .87 .70 .60
4 .67 .62 .66 65 .66 83 .67 6 .87 50 .62
s .60 .52 .54 .60 .89 87 .62 .60 .60 .60 .39
10 .60 57 .87 .60 .59 66 .61 60 .60 40 .49
2 .0 38 .38 S0 .50 57 .87 .50 .S0 .20 .06
s .50 A2 47 49 .50 53 .52 50 .50 .30 .39
(8) .50 50 .47 .50 .50 52 .82 S0 .50 230 .39
12 .50 A7 .48 .50 .S0 FYRY S0 .50 .30 .43
20 .%0 A8 .49 S1 .80 S5 .81 50 .50 30 .46
5 .40 36 .36 40 41 A2 .43 40 .0 .20 .26
10 .40 .40 .38 40 .41 J6 .42 39 .40 .50 .33
s .3 .27 .30 .31 .38 .25 .36 EYRRERT 40 .24
(& .13 30 .30 36 a8 38 .36 34 M 20 .24
s .33 26 .31 36 .4 ETRR T 33 L33 .20 .27
18 .33 30 .32 34 3 I3 33 .33 .30 .30
4 .28 28 .22 28 .30 .24 .30 a8 .28 A0 .18
s .20 8 .8 31 .24 23 .28 20 .20 .20 .14
10 .20 48 19 21 .22 22 .22 .20 .20 A0 17
(10) .20 20 .19 40 .22 26 .22 .20 .20 20 a7
9 M .08 83 17 4 32 12 o1 11 A0 10
18 .08 11 Y T 42 .12 a2 N 10 .10
2 0 .08 .28 0 .18 RYREAY 00 .01 40 .92
s o0 03 .08 .10 .06 43 .08 .00 .00 30 0
12 0 02 .04 10 .03 J4 .02 .00 .00 .20 .S
20 o 02 .03 41 .02 42 .0 .00 .00 .10 .08
" = .30 o = .36 a- = .20 o = .02 @” = 1.83

g = .01 $ = 1.00 g = 10.90 8 = .01 s = .03

p, = +03 ;c - .50 ;e - .04 b, = 03 ;e = .08

WAD = .023 MAD = .030 MAD = .01 MWAD = .002 WD = .106
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discussed above and whose data are displayed in Table 5. The important thing

Insert Table 5 about here

to note is that subject 26 is congistently sub-additive (and this is predicted
i quite well by the model); subject 18 is generally additive, as implied by

;c = .50; subject 15 is super-additive, but not consistently so; subject 3 is

additive; subject 32 is both highly sub-additive and inconsistent. Prom our

perspective, these results strengthen our interpretation of the 6 and 8

parameters, as well as the general form of the model.

A possible criticism of the above experiment is that although we investi-

: gated the responses of 32 individual subjects in depth, we only obtained

‘ responses to a single scenario. 1In other words, are our results simply a
function of the content of the specific scenario investigated? Therefore we
ran another 32 subjects using four different content scenarios but with the

i same numerical values as in the scenario involving the automobile accident.

These scenarios involwved: (1) A taste test where people had to identify a

.!..'l [}

soft drink (Coke vs. Pepsi); (2) A bank robbery where witnesses gaid the

robbers spoke to each other in a foreign language (German vs., Italian); (3) An

N RN

experiment where 6 year old children had to identify words flashed on a screen

(ROT vs. BED); and, (4) Experts investigating the cause of a fire (arson vs.

¢ so8 e -
DI M A B

f short-circuit). Eight subjects were assigned at random to each scenario.
j Since the regults from these four scenarios parallel those of the automobile-
= accident-scenario in terms of model fits (albeit with different parameter
i values), they are not presented here.

Experiment 2 :i::H
i n‘.\::
- We had two goals in conducting experiment 2. First, we wished to test ‘f:a
), systematically for the effects of source credibility and signal dissimilarity -—
* N
[ (SR
’ N
.l
N
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TABLE 5
I Additivity/Non-additivity of Complementary Probabilities
! Subject Subject Subjact Subject Subject
) #26 s Nns 3 #32
. Bp (1-p) n !l I 1 !l !l D)
1 0 2 .85 1.00 .80 1.00  1.06 1.00 .99 1,00 .70 1.00
1 o 6 .92 1.00 .99 1.00 .59 1.00 .99 1,00 1.10 1.00
1 () 12 .99 1.00  1.00 1.00  1.09 1.00 <99 1.00  1.00 1.00
= 1 [\ 20 1.00 1.00 .99 1.00  1.00 1.00 .99 1.00 .80 1.00
' .89 11 9 91 .95  1.01 1.00 .96 1.02 .99 1.00 .80 .81
) .89 o1 18 92 .97  1.00 1.00 <99 1.01 1.01 1.00 .90 .91
- .89 a1 18 95 .97  1.00 1.00 96 1.01  1.01 1.00 .80 .91
D
.80 .20 5 .95 .90  1.01 1.00 1,08 1,05 1.00 1.00 .80 .65
.80 .80 10 .94 .95 1.01 1.00 1.06 1.03  1.00 1.00 .70 .83
.80 20 10 .96 .95 1,20 1.00 1.10 1.03  1.00 1.00 .80 .83
.75 .25 4 .82 .83 .90 1.00 .96 1.07 .91 1.00 .40 .57
.‘I'_ .67 .33 6 .86 .92 .99 1.00 .97 1.05  1.01 1.00  1.00 .71
i 67 .33 6 .87 .92 .96 1.00  1.10 1.05  1.00 1.00 50 .7
: .67 .33 9 .85 .95 .99 1.00  1.00 1.03 .99 1.00 .50 .81
L .67 .33 18 .93 .97 .99 1.00 .98 1.02  1.00 1.00 1.00 .90
P .60 .40 5 .88 .90 1.00 1.00 1.09 1.06 .99 1.00 .80 .65 -
i .60 .40 10 97 .95 1.00 1.00 1.00 1.03  1.00 1.00 .90 .82 Rt
e .50 50 2 .76 .75 1.00 1.00 1.14 1.14 1.00 .99 40 .12 «'Z:::';
: .50 .50 8 1.00 .94 .98 1.00 1.06 1.03  1.00 1,00 .60 .78 ;?".'.}
.50 .50 8 .84 .94 1,00 1.00 1.04 1.03  1.00 1.00 .60 .78 T
.50 50 12 .94 .96 1.00 1,00 1.08 1.02  1.00 1.00 .60 .85 =
.50 .50 20 .96 .98  1.02 1.00  1.10 1.01 1.00 1.00 60 .91 N
~ - . A o - - -~ ‘.;
0” = .50 0° = .36 8” = .28 6” = .02 9° = 1.83 -
8 = .09 8 = 1.00 8 =10.90 g = .01 g = .03 N
N
a1
R R i
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on the parameters of the model. In accordance with our theory, ©° should
decrease as source credibility and signal dissimilarity increase. Second, we
wished to investigate the importance of individual differences in the way

people cope with the ambiguity inherent in ocur judgment task.

METHOD

Design. Two levels (high/low) of source credibility and dissimilarity of
signals were crossed in a 2 x 2 factorial design. In addition, four different
content scenarios were constructed that varied on all four experimental
combinations (resulting in 16 different stories). Subjects were asked to
Judge 21 stimuli that varied in p and n (see below) for each of the four
content-distinct scenarios. Thus, each subject initially made 84 probability
judgments. However, to reduce boredom in the task, subjects made judgments in
all four scenarios, with each scenario representing one of the four experi-
mental conditions. FPor example, subject 1 received gcenario A in the
high/high condition, scenario B in the high/low condition, and so on. A four-
person latin-square was set up so that every scenario appeared an equal number
of times in each experimental condition. Finally, since subjects made judg-
ments in one scenario under the high/high condition, the same scenario was
also given in the low/low condition (and the order was countaer-balanced). 1In
this way, we were able to examine each subject's judgments holding the content
of the scenario constant. This part of the experiment required 21 additional
judgments, making the total number of responses for each subject equal to 10S5.

Stimuli. The four content scenarios used involved the automobile
accident from experiment 1, the word-recognition task described above and two
new stories. These latter scenarios involved determining the name of a play

from an excerpt, and the diagnosis of a medical condition. Four versions of

al
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each scenario were constructed to reflect different levels of credibility and

B * NEINCRSIERE | DO

dissimilarity (e.g., in the word-recognition task, we had 15 vs. 6 year olds .

D

and BED vs. ROT as opposed to BED vs. BID). Within each scenario, subjects

were given 21 stimuli that reflected the amount of evidence for each

hypothesis. The values of the stimuli were different from those ugsed in
experiment 1 in that smaller values of n were used in order to provide more
gensitive tests of the model. The stimuli used were: for p =0, t, n= 1, 2,
6; for p = ,125, 875, n = 8; forp = .2, .8, n=5; for p = ,25, .75, n = 4;
for p= .33, .67, n=6, 9; for p= .67, n=3; forp= .4, .6, n=5; forp =

-,‘ 05' n = 2’ 8.

Subjects and Procedures. Thirty-two subjects participated in this

experiment (comprising 8, 4-person latin-squares). Subjects were paid $5 per
hour and the task took about one hour to complete. The tasks were presented
in booklets and after each geries of 21 judgments, subjects were either given
a break or another task. At the end of the experiment, a manipulation check

was performed on the credibility and dissimilarity induction. Specifically,

each subject was asked to rate (using a 0-100 scale) the credibility of the

source and the confusability of the signals in all four scenarios. Since each :?z
scenario had high and low levels of each factor, the subjects rated credibil- E;
ity and dissimilarity under both conditions. Therefore, subjects made 4 ,fﬁ
judgments on each of the 4 scenarios. f;f%
=

Before presenting the main results, we note that the manipulation check ifj
showed that subjects did, on average, see the "high" credibility versions of ;3;;
the same scenarios as greater than the low (80 vs., 47); and the high dis- :}:E
similarity signals as leas confusable than the low (30 vs. 62). ;HHE
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(1) General fit of the model: FPor each subject in each experimental
condition, the model was fit to yleld estimates of ©° and 8 (this resulted
in 160 models - 32 subjects x 5 models), The fit of the individual models was
comparable to that of experiment 1 (median MAD = .042 over all conditions).

(2) Manipulation of ©°: The appropriate analysis-of-variance (2 x 2
x latin-square) was performed using 6' as the dependent variable and the
results showed a significant main effect for “"credibility"” (p < .001), no
main effect for "dissimilarity,” and a three-way interaction of scenario x
credibility x dissimilarity (p < .02). The results for the main effect are

shown in Table 6. The table shows that 6° dJdoes increase as the credibility

Insert Table 6 about heré

of the source decreases, thereby confirming our prediction. However, there
was no effect for dissimilarity, contrary to our prediction. The three-way
interaction showed that in two scenarios, the effect of dissimilarity of the
signals had a large effect on 0° when credibility was low, while in the
other two scenarios, dissimilarity had a large effect when credibility was
high. However, it is not clear why this occurred and we do not consider it
further.

In addition to the above analysis, recall that each subject also received
the same scenario in the high/high and low/low conditions. A comparison of
the means of the estimated 0”'s in these two conditions also showed a sig-

nificant difference in the hypothesized direction; i.e., 8” = .17 in the

high/high condition, B° = .29 in the low/low (p < .004 by a paired t-test).
iin Thus, with the exception of an effect for the dissimilarity of the signals,
5}. ) our hypotheses concerning ©° are supported by the experimental data,

ii; (3) Individual differences: We now consider the following: (a) can

%; subjects be characterized as having a general strategy, as measured by the
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TABLE 6

Experiment 3 - Mean Q“ Parameters
by Experimental Conditions

E Dissimilarity -

High Low S

a8 High a7 «20 .19
Credibility

Low .31 .29 .30 s
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consistency of their ©6° and B values, in different scenarios?; (b) is the
amount of one's adjustment, as meagsured by ©°, systematically related to the
consistency of executing one's strategy?; (c) can individual perceptions of
the credibility of the source and the dissimilarity of the signals account for
variance in ©” and 8 within each of the experimental conditions?

(a) Recall that for each subjact, four different scenarios were given and
a model fit to the data in each. Therefore, each subject can be characterized
by four ©6”'s, $'s, and MAD's. To determine if the parameter values were
more alike within a subject than between subjects (this is measured by the
intra-class correlation), a one-way repeated analysis-of-variance was per-
formed (32 x 4) for ©°, p_, and MAD (Winer, 1963, chap. 3). The results
showed that for ©°, r = .73 (p < .001); for ;c, r = .68 (p < .001); and
for MAD, r = .86 (p < .001). These results are particularly striking when one
recalls that the four scenarios varied over the four experimental conditions.
However, in spite of these differences, the results show strong and stable
individual strategies in the amount that is adjusted (9°), the direction
of the adjustments (pc or B8), and the consistency of executing one's

strategy (MAD).

(b) In experiment 1, we found a significant positive correlation bhetween
5‘ and MAD. The same positive relation was found here in three of the four
scenarios (r = .67, .48, .40, .10). Thus, our interpretation of © as
reflecting a cognitive simulation process is strengthened bx the generality of
this finding.

(c) Since each subject made independent judgments of the credibility and
confusability of the experimental stimuli, we were also able to investigate how

these judgments related to ©° within experimental conditions. To do so, we

re-analyzed our data with a regression model where ©° was the dependent
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variable, and the individual ratings of credibility and confusability, together
with dummy variables representing the different scenarios, were the independent
variables. More precisely, there is a regression equation of this type for each

of the four experimental conditions. However, these four equations can he

estimated more efficiently as a single model using Zellner's (1962) procedure

for "seemingly unrelated” regressions. The multiple R estimated by this

;f procedure was .44 (with an adjusted R of .35). Of the independent variables,
there was no effect for either scenarios or confusability. However, all four
;l coefficients for credibility in the different experimental conditions were
significant (p < .02) and of the hypothesized sign (i.e., a negative relation
between ©° and ratings of credibility). We interpret these results as
strengthening the conclusions drawn from the more gtandard ANOVA of our study;
that is, ©6° is not only affected by different levels of credibility across

all subjects, it also covaries significantly with individual perceptions of

a [
'.'..

credibility within each of these levels.

ﬁ: Experiment 3
The purpose of this experiment was to answer the following question: Can e
individuals' choices between gambles be predicted from knowledge of their ©° ;fé
and 8 parameters obtained from a geparate inference task? To examine this, i;ﬁ
subjects were first asked to make judgments as in experiments 1-2 and both i;:
‘i 0 and B were estimated as before. The subjects were then asked to choose :z;:
E (or express indifference) betwesn 9 pairs of gambles involving the outcome from E;%E
% an urn with known probability versus the occurrence of an event on the basis of f::
ii unreliable reports. If ©° and B do capture agpects of ambiguity that affect j
Si choice, knowledge of these parameters should allow one to predict individual 7 o

choices in addition to inferences. P

NN
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Subjects. Twenty subjects, recruited from the University of Chicago
community, participated in this study. They were paid $5/hour.
Stimuli. PFor the inference task, two different scenarios were used:

the automobile-accident story, and the taste-test story (Pepsi vs. Coke) for

which we had also previously collected data (see end of experiment 1). These o
were chosen because the 0 and £ values were quite different in the two
cases. In both scenarios, subjects received 40 combinations of p and n

-

that were identical to those used in experiment 1. The stimuli for the choice .
task involvad one of the following: (a) In the automobile-accident task, ;ﬁ'{
subjects were faced with choosing between betting that a ball drawn from an -
urn with known probability was green, versus, betting that the car that caused
the accident was green bagsed on witnesses' reports of the car color; (b) Por
those in the taste-test scenario, the choice was similarly betwsen betting
that the outcome from an urn was a certain color, versus, betting that the
drink was Pepsi-Cola. 1In both scenarios, subjects were told to imagine that
their payoff for being corrsct would be $10. Thus, the payoffs for the urn
gamble and the bet involving the report of some event were equal. Within

scenarios, each subject saw 9 pairs of gambles that varied in the proportion

of colored balls in the urn and the proportion of reports favoring the

particular hypothesis. These proportions were always the same in the two
bets. The exact values of p used in the 9 pairs were: 1, .875, .75, .625,
«50, .375, .25, .125, and 0. The number of balls in the urn and the number of

reports were held constant at 8.

Procedure. The 20 subjects were randomly assigned to one of the two IS
scenarios. The procedure for the inference task was identical to the previous
experiments. After subjects finished the inference task, they wers presented

with the appropriate choice task. The nature of the two gambles was D

L AL SIS DI A TN
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explained, and subjects were then asked to choose, or indicate indifference,
between the gambles. If they were not indifferent, they were also asked to
indicate their strength of preference on a 4-point scale (from "little" to

“great deal®). After doing this for one value of p, they turned the page

and made another choice (and strength of preference rating, if appropriate) at

P

the next level of p. This continued until all 9 pairs had been considered.
Therefore, for each subject, there were 9 choices between an unambiguous bet
from an urn with known p, versus an ambiguous bhet that an event occurred, on
the basis of the proportion of favorable reports from an unreliable source.

Results. Since each subject first participated in the inference task,

we briefly consider these results before discussing the choice data. As
expected, there were marked differences in the ©° and § parameters in the :':;:';:
two scenarios. The medians for 0° and p, (implied by g) were .13 and
«11, respectively, in the automobile-accident scenario. For the taste-tast """
—
story, the median ©° was 1.35 and median p, = .45. Thus, the taste-test '.;é_‘:v'-
scenario induced much adjustment, with a cross-over point near .50, while the :
automobile-accident story induced less adjustment but a lower cross-over .u....3
point. '_'.'-::;
To compare each subject’'s choices with predictions from the inference 4
model, the following procedure was used: any combination of ©° and p. ,.4

implies when and wvhere S(pp) 1is greater, less than, or equal to, p, (sae
equation (8)). Thus, for each subject, when p, > S(pp), we predicted the

urn would be chosen over the bet based on unreliable reports; when S(pp) >

Ppr the opposite prediction was made; when S(p,) = p,, we predicted
indifference between the two gambles, Note that when 0° = 0, we always

predicted indifference between the gambles since S(p,) = p, for all p,.

-~

In Table 7, we show the 5' and pc values for each subject (grouped by —
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Ingsert Table 7 about hare

scenario), and the number of correct choice predictions by subject.

(il
.

AR

To evaluate how well the choices were predicted from knowledge of é‘

)
L

[

and ;E' we used a random baseline for comparison; i.e., for each of the 9
choices made by a subject, there were three possible outcomes; urn, report,
or indifference. Since the probability of randomly predicting the correct
response is 1/3, we computed the probability of getting at least r hits in 9
trials on the basis of chance (using the binomial distribution). This prob-
ability is shown in the last column of Table 7. FPor example, subject 1 was
correctly predicted in 8 of the 9 choices; the probability of getting at least
this many hits by chance is .00t. Thus, we rejected the hypothesis that our
predictions for this subject were no better than chance. Using this method
for all subjects, it can be gseen that 5 of the 10 subjects in the automobile-~
accident scenario, and 4 of 10 in the taste-test, are well predicted using a
type I error level of .05. If this error level were increased to .15, a
majority of subjects (12/20) would be accurately predicted from their infer-
ence parameters. In any event, at the aggregate level (over subjects and
scenarios), there were 103 hits out of 179 predictions (one response was
missing). The probability of getting at least this many hits by chance is
miniscule.

Second, consider the results concerning the strength of preference
ratings. Recall that in addition éb choosing between gambles, subjects were
asked to rate their strength of preference on a 4-point scale. These ratings

supplement our analysis of the choice data in the following way: in each

ey e,
YOSl R
4 2

-

scenario, the number of prediction errors was 38. However, in the taste-test,

©° is much larger than in the automobile-accident scenario. Since 0° is

A

’l.

directly related to the amcunt of adjustment to ©v,, the differences
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TABLE 7

Choice Predictions from Knowlidge of 8‘ and ;E

- - No. of Prob.
Ss e P, hits (r > hits)

1 .00 - 8 .001

2 .00 - 1 849

3 .00 - 3 612

4 .00 - 4 .341

5 Automobile-Accident 5 .05 .07 7 .008
N Scenario 6 .10 .74 5 140
- 7 .16 15 6 .040
h; 8 .19 .20 6 .040
= 9 .63 .02 5 .140
& 10 .75 .50 6 .040
11 .20 .21 7 .008

12 .24 .07 4 .34

13 .66 .50 4 341

14 .80 .50 1 970

Tagte-Test 15 .96 .50 5 140
Scenario 16 1.50 .50 7 .008

17 1.7 .40 7 .008

18 1.99 .50 5 140

19 2.01 .06 9 .000

20 3.20 .02 3 612
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between S(p,) and p, should be larger in the taste-test than in the
accident story. PMFurthermore, the larger the differences, the stronger one's
preferences ghould be since they are further away from indifference (where
P = s(ph)). We tested this by comparing the mean strength-of-preference
ratings in the two stories across the nine levels of p. These results are

shown in Table 8. First, note that the means for the taste-test are larger

Ingsert Table 8 about here

than the automobile-accident at every level of p. Second, the pattern of
means is consistent with the general form of the model in that preferences are
strongest at p = 1, decreass as p approaches Pcr and then increase again
at p s 0. Therefore, the strength-of-preference data are consistent with
both the difference in the sizes of 6° for the two scenarios, as well as the
gensral form of the model.

As the astute reader may have noticed, our theory does not necessarily
imply exact equivalence between choice and inference tasks since these could
differ with respect to the B parameter. 1In particular, whils payoffs are
explicit in the choice task (i.e., a gain of $10), there are no explicit "“““"'

payoffs in the inference task. Thus, one aight expect a systematic bias

between B as estimated in the inference task, and 8 as implied by
subjects’ choices, Specifically, as stated after first presenting our model,
if the effect of ambiguity is to induce caution rather than riskiness, then
the prospect of a gain would focus attention mors on smaller rather than

larger values of p(Gain) such that 8

<8 (Convarsely, the

choice inferance’

prospect of a loss would imply more attention being paid to greater rather

smaller values of p(Loss) such that B8 choice > 8

one would expect ambiguity avoidance over a wider range of p 1in tasks

1 nforcnce) « Consequently, ,.

involving choice as opposed to inference. Indeed, some of the errors in




TABLE 8
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=
"~ Means of Strength-of-Preference
[j.: for Two Scenarios
>
Automobile Both
P Accident Taste-test Scenarios
N 1 3.1 3.7 3.40

; .87 2.5 3.1 2.80
- 750 2.0 2.5 2.25
o .625 1.6 2.1 1.85
T .500 9 1.7 1.30
378 1.4 2.1 1.75
Li 250 1.3 2.1 1.70
. 125 .9 2.0 1.45
' 0 1.8 2.2 2.00

1.72 2.39 2.05
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predicting subjects' choices can be attributed to precisely this source of

systematic bias. Consider the data for the automobile-accident scenario in

,l
¢

Table 7. Eight of the 10 subjects had low Py values in the inference task
and thus could be thought of as having already conceptualized the ta:k in

terms of "gains.”™ On the other hand, for the two subjects with high pc's in

0 ALAING

the inference task (numbers 6 and 10), all 7 prediction srrors out of 18

choices were in the same direction, namely subjects' a's estimated in the
i inference task indicated larger ;c'a than were revealed by their choices.
The same bias was also found in the taste-test scenario. That is, consider

again only those subjects with high p 's (numbers 13 through 18). For 4 of
c

these subjects, all 15 out of 15 prediction errors are consistent with the

8 choice ¢ 81 nference bias. The two prediction errors of one subject (number

16) are in the opposite dirsction, and the 8 prediction errors of subject 14
i are equally distributed in both directions. To summarize, we conclude that

o whereas individuals' parameters in an infarence task can be used to predict
choices, many errors of prediction are in accord with a systematic bias in the

8 parameter that is consistent with our theory.

Experiment 4
Having manipulated the & parameter in experiment 2, the purpose of
experiment 4 was to investigate the effects of manipulating 8. This was done
by allocating subjects to different roles (sellers and buyers) in an insurance \
context. The dependent variable of interest involved statements of maximum ‘-Q
SN
buying prices and minimum selling prices. The data were collected as part of v
a larger investigation by Hogarth and Xunreuther (1984) on the effects of ::Z;:
N
:'.'-_: : ambiguity in insurance decision making. :;-;
L The assumption underlying the experimental manipulation is that a person .
P\: who assumes a risk, is likely to pay more attention to larger values of .:::}
3
e A
roS \'_1
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:’: p(Loss) than someone who transfers tha risk. Experimental evidence consistent )
l with this assertion has been documented by Hershey, Kunreuther, and Schoemaker

-

- (1982) and Thaler (1980). In our framework, it implies that 8“11.r > Bbuyer'

:':: Given this assumption, approximate ambiguity functions for buyars and sellers

.. of insurance can be sketched as in FPigure 4. Note that when buyers/sellers in LS
¥ Insert Figure 4 _about here #
S
' a non-ambiguous situation, s(ph) = pp and all responses are on the diagonal. ]
jﬁ; If one further assumes that buying and selling prices are monotonically

'.‘.:_-‘ related to S(p,), FPigure 4 suggests the following predictions: (1) when

“ buyars and sellers are in a non-ambiguous situation, S(PA’ = Par and the

X

seller's price should equal the buyer's; (2) When buyers and sellers are
equally ambiguous (i.e., their O's are equal), the seller's price should
exceed the buyer's over the whole range of Ppe Note that this arises because
" the seller always weights imaginary values of p(lLoss) larger than the
initial estimate more than the buyer. (3) Consider a seller who has no

ambiguity about the probability of a loss, but a buyer who does. In Pigure 4,

. « ]
.t St
. RN

this is shown by comparing the buyer-ambiguous function with the diagonal
(seller-unambiquous). WNote that the buyer's function is above the diagonal

for p, < P This means that the buyer will perceive the probability of loss

(e ate o
l";'.'t_'-.: Sal

as higher than the geller, and should be willing to pay more than the seller

would ask. However, when p, > p,, the buyer will perceive the loss prob-

(3
.

Y o TR TP

ability as lower than the seller, and offer less than the seller would ask.

This implication of the model provides a particularly stringent test for our .
‘l;; theory. Experiment 4 was designed to test the above three predictions. :;:_'.:}
.:' .:"':::
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Figure 4. Approximate ambiguity functions for
buyers and sellers of insurance.
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METHOD

Design. Prices for insurance contingent on ambiguous and non-ambiguous
probabilities were investigated across four different probability levels ',01,
«35, .65, and ,90)., Each subject was assigned the role of buyer or seller of
a contract concerning a potential $100,000 loss and responded to both ambig-
uous and non-ambiguous versions of the stimulus at one probability level.
Thus, the design of the experiment involved three factors, two of which were
between subjects (i.e., role of buyer or seller, and probability level) and
one within subjects (i.e., ambiguous vs. non-ambiguous probabilities),

Stimuli. The scenario used in the stimulus material involved the owner
of a small business (net assets of $110,000) who was seeking to insure against
a $100,000 loss that could result from claims concerning a defective product.
Subjects assigned the role of buyers were told to imagine that they were the
owner of the business. Subjects assigned the role of sellers were asked to
imagine that they headed a department in a large insurance company and were
authorized to set premiums for the level of risk involvad. Ambiguity was
manipulated by factors involving how well the manufacturing process was
understood, whether the reliabilities of machines used in the process wera
known, and the extent to which manufacturing records were well kept. In both
ambiguous and non-ambiguous cases a specific probability level was stated

(e.g., .01); howaver a comment was also added as to whether one could "feal

"

confident" (non-ambiguous case) or “"experience considerable uncertainty" ?

o’
e %a®
‘. l.

o
17 %

(ambiguous case) concerning the estimate. As far as possible, the same N
wording was used in both the buyer and seller versions so that perceptions of T
ambiguity would be uniform in the two cases.

Subjects and procedures. Subjects were 111 MBA students at the

University of Chicago who responded to questionnaires distributed in a course Q—T
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on decision making. To avoid prior influence, the experiment took place
during the beginning of classes. Subjects were asked to respond to the
questionnaire in anonymous fashion and promised group-level feedback at a
later class session (which they subsequently received). It is important to
note that subjects had prior training in business, economics, and statistics,
and the insurance context was familiar to them. Eight different forms of the
stimulus materials, corresponding to the 2 (roles) x 4 (probability levels),
were gshuffled and distributed in the classrooms thereby ensuring random
allocation of subjects to conditions. After reading each stimulus, subjects
were asked to state maximum buying prices (for buyers) or minimum selling
prices (for sellers).

Regsults. Table 9 reports medians for all experimental conditions as well

as the differences hetween the sellers and buyers for the ambiquous and non-

Insert Table 9 about here

ambiguous cases respectively. We report medians since several distributions
within conditions are quite skewed, and variances also differ betwsen cells at
the same probability levels, often significantly. The pattern of results in
Table 9 supports our three predictions. First, in comparing buyers and
sellers in the non-ambiguous case, note that the median prices are quite
similar over the four probability levels., Second, when buyers and sellers are
both ambiquous, observe that the selling price is considerably larger than the
buying price at every level of p. This result strongly confirms the notion
that Bseller > Bbuyer when considering ambiguous loss probabilities. Third,
consider the ambiguous buyer and the non-ambiquous seller. As expected,

when p is small (.01), the ambiguous buyer is willing to pay more ($1,500)

than the non-ambiguous seller asks ($1,000). However, as the probability of

loss increases, the two prices converge (at p = .35), and then diverge, with
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! TABLE 9
ﬁ Medians of Selling and Buying Prices (§)

3 Difference

ﬁ Sellers' Buyer s! Sellers-Buyer 82
i Probability levels Ambiguous Non-ambiguous  Ambiguous Non-ambiguous Ambiguous Non-ambiguous
ﬁ,” .01 Median 2500 " 1000 1500 * 1000 1000ns Ons

w (n) (14) (13)
2

m 35 Median 52500 b 37500 35000 ns 35000 17500 ** 2500n3

: {n) (14) (15)

w «65 Median 70000 ns 65000 45000 hh 65000 25000% * » [ LR

- (n) (13) (14)
@ «90 Median 90000 ns 90000 6000y LA 82500 30000 &+ 7500* +
- (n) (14) (14)

m Two-tailed tests used throughout:

g

. 'wilcoxon test. *p < .05
X n:t::u::»n:o% test. ** p < .01

% L2 ‘ A o°°—

g ns not significant
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the buyer's price bein~ less than the geller's (at p = .65, .90). Indeed, at
higher probabilities, the buyer is willing to spend considerably less than the

N seller wants to charge. Therefore, although the buyers seem to be ambiguity

%;- avoiding at low probabilities, they paradoxically appear to be ambigquity
i seeking for high loss probabilities. Both results are predicted by our -
L;h model. In Hogarth and Xunreuther (1984), the results of several other related ;i;
;3 experiments are reported using different scenarios, research designs, i%?
: subjects, and response modes. The results of these experiments are consistent :i:
with those reported here, thus attesting to the stability of the phenomena. Eii
DISCUSSION D
We now discuss the implications of our theory and results with respect to .iﬁ
the following issues: (1) the importance of ambiguity in assessing uncer- 3
tainty; (2) the use of cognitive strategies in probabilistic judgments under ;::
L
e anbiguity; (3) the role of ambiguity in risky choice; and, (4) extensions of 'ﬁﬁ
E; the model to multiple sources and time periods. Eié
, ok
Asbiguity and the Assessaent of Uncertainty —
éi: The concept of ambiguity highlights the distinction between one's lack of ;;:
i? knowledge of the process that generates outcomes and the uncertainty of ﬁi:
: outcomes conditional on some model of the process., The fact that there are at i:
':: least two sources of uncertainty in most situations leads to the irony that ;i
2?' one needs a well-defined model to give precise estimates of how much one ;ﬁ

- doesn't know. Indeed, the usefulness of formulating well-defined stochastic i
procesgses is in eliminating ambiguity so that outcome uncertainty can be

quantified. Thus, when coins are "fair" or random drawings are taken from
urns with known p, there is no second-order uncertainty. Furthermore, the

conditional nature of uncertainty is implicitly recognized in various attempts

Pl T TN
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to quantify and improve inferential judgments. For example, consider how
uncertainty is defined in the "lens model"” (Hammond, et al., 1964). In this
case, the uncertainty in the environment is measured as the residual variance
not accounted for by a well-formilated ecological model, Thus, unexplained
variance or uncertainty is conditional on the model of how particular cues
combine to form the criterion of interest. Now consider the work of Nisbett
and colleagues on trying to improve probabilistic judgments through training
(Nisbett, et al., 1983; Jepson, et al., 1983). They argue that training and
experience can allow one to see the underlying structure of real-world
problems so that the appropriate model can be used for making better judg-
ments. Thus, the focus of their training is on making various statistical
principles (e.g., regression-to-the-mean, law of large numbers, use of base
rates, etc.) more obvious in everyday inferences.

While the conditional nature of uncertainty has been implicitly
recognized, ambiguity results from its explicit recognition; i.e., by
realizing that the "model” is itself subject to uncertainty. 1Indeed, one
could argue that the cost of urn models, coin-flipping analogies, and the
like, is that they obscure the fact that most real world generating processes
are not precisely known. Purthermore, even if a process is well-defined at
one point in time, the parameter(s) of the process can change over tinme,
resulting in ambigquity as well as uncertainty. For example, imagine that you
have been asked to evaluate the research output of a younger collea:me being
considered for promotion. Your colleague has produced 11 papers; of these the
first 9 (in chronological order) represent competent, albeit unexciting
scholarly work. On the other hand, the latter 2 papers are quite different;
they are innovative and suggest a creativity and depth of thought absent from

the earlier work. What should you d0? As someone who is aware of regression

r:!
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fall#éios, you might consider the two outstanding papers as outliers from a
stable generating process and thus predict regression-to-the-mean.
Alternatively, you might consider the outstanding papers as “extreme”
responses that signal a change in the generating process; i.e., a new and
higher mean. If this were the case, the same general regression model would
predict future papers of high quality (regression to a higher mean). If one
asks what is the nature of the signaling in this case, it is obvious that the
chronological order of the papers is cruclal. Indeed, imagine that the
outstanding papers were the first two that were written; or consider that they
wers the gecond and sixth. Each of these cases suggests a different under-
lying model and perhaps a different prediction. In any event, the uncertainty
associated with any prediction is complicated by the ambiguity regarding the

appropriate mean of the regression process.

Cognitive Strategies in Inferences Under Ambiguity

We have assumed that people use an anchoring-and-adjustment strategy in
making inferences under ambiguity. However, whereas the term, "anchoring-and-
adjustment” is quite general and could encompass a wide range of models (cf.
Lopes, 1981; Binhorn & Hogarth, 1984), we have been quite specific as to the
nature of this process in our tasks, Of greatest interest in this regard is
the idea that adjustments are based on a mental simulation in which “"what
might be," or, "what might have been," is combined with "what is" (the
anchor). The rationale for this comes from the fact that the evaluation of
evidence often involves an implicit comparison process (similar to the
perception of figure against ground). Thus, when evaluating the strength of
evidence for a particular hypothesis, the evidence that might have been can
serve as a convenient contrast case for comparison. Furthermore, since

ambiquity implies that multiple models could have produced the observed
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results, it seems natural to consider that different results could have
occurred on the basis of different underlying processes.

The support for the hypothesized anchoring-and-adjustment strateqgy
comes from several sources. FPFirst, recall that in our model, the largest
adjustments to the anchor occur when evidence is meager. Moreover, as n
increaseg, S(f:c) asymptotes at Py The results of experiments 1 and 2
support this prediction. Thus, the weight of evidence (to use Keynes' term)
for "what is,” dominates "what might have been" as the absolute amount of
evidence increases. Purthermore, the effect of increasing n is to reduce
the amount of non-additivity of complementary strengths. Since most of our
subjects were sub-additive, our model provides a psychological link to
concerns expressed by others regarding the appropriateness of additivity when
evidence is meager (Shafer, 1976; Cohen, 1977). In particular, Cohen (1977,
chap. 3) points out that when one considers an incomplete system, the lower
benchmark on provability is not necessarily disprovability, but nonprov-
ability. Por example, if one has meager circumstantial evidence such that the
probability of the truth of a particular theory is .2, does this imply that
the theory is false with p = .87 Rather, one might say that the theory is
not proven (in a probabilistic sense) as opposed to saying that there is a .80
chance that it is wrong. Purthermore, the idea that the complement of
statements can lead to “not-proved” rather than "disproved,” seems to be
daeply imbedded in the Anglo-American legal system. Indeed, in Scottish law,
defendants are either found guilty, not-guilty, or "not proven."” The last
category is reserved for those cases where the evidence is too meager to allow
for a judgment of quilt or innocences.

Second, the fact that non-additivity results from a shift in the

direction of the adjustment process is consistent with other "order affects"
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due to the use of anchoring-and-adjustment strategies. FPFor example, in a

., ; traditional Bayesian revision task, Lopes (1981) found that a change in the
order in which sample information was presented affected overall judgments by
changing the anchor. Thus, consider having to judge whether samples come from
an urn containing predominantly red or blue balls (70/30 in both cases). You
N first draw a sample of 8 that shows (5R, 3B). Thereafter, you draw another

sample of 8 with the result (7R:1B). After each sample, you are asked how

............. SRR
o -

T s el \ N '-‘-.'_‘.‘,-.'_\ _-. LN \.'-'\'\ s \ -. . \.~. '.‘-.‘\ \ """

likely it is that you have drawn from the predominantly red urn. When the
'."_7.: sample evidence is in the order given here, people geem to anchor on the first
':}.:' sample (5:3) and then adjust up for the second (stronger) sample. However,
' when the order of the samples is reversed, people anchor on (7:1) and adjust
down for the weaker, second sample. This effect cannot be accounted for by
assuming that people are using a Bayesian procedure (which treats the two
' situations as equal), but it does follow from an anchoring and adjustment
_\ process in which the anchor is weighted more heavily than the adjustment.
:- Third, the results of experiment 2 provide important evidence regarding
‘ the process assumed to underlie the model. In addition to the fact that the
.'.: experimental manipulation of source credibility affected ©° as predicted,
'-.:'.',- two other results were found; a positive correlation between ©° and MAD and,
:;" the stability of individual differences in ©“, B8, and MAD across scenarios.
2 The first result bears directly on the nature of the adjustment process since .T:
it suggests a "cost” of engaging in mental simulation; namely, a concomitant :\‘;
N
j;::f lack of control over one's gtrategy (Hammond & Summers, 1972). The second :.
result suggests strong personal propensities in evaluating evidence that ‘—-:
transcend the particular content of gcenarios. While it is too early to ‘i
explicate the nature of these individual differences, their existence lends ;::E:;;
- support to the idea that the parameters of our model do capture important KRS
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aspects of the process that detarmines judgments under ambiguity.
While our model accounts for the rather simple inferences we have
studied, it also relates to an important class of inferences that result from

*surprise.” Consider Figura 5, which shows one's expectations for p as a

Ingert Figure 5 about here

function of the credibility of the source and the dissimilarity of the signals.
First, note that when credibility and dissimilarity are high, one expects p to
be very high or low (recall our earlier example of cameras taking pictures of a
bank robber). However, imagine that one camera showed the bank robber to be
white, and the other showed him to be black. Such a result, where p = .5, would
be surprising given the credibility of cameras and the dissimilarity of white and
black robbers. 1Indeed, the data "are not good enough,” which is represented by
the range of p indicated by the two-headed arrow. Second, consider the low
credibility-low dissimilarity situation; e.g., the taste-test scenario. Imagine
that you were told that of the 20 people in the Pepsi vs. Coke taste-test, all
correctly identified the drink as Pepsi. Such a result, whers p = 1, would
be surprising. However, this type of surprise is one where the "data are too
good® rather than not good enough. Thus, there are two types of surprise and
both occur when ambiguity is low. Indeed, when ambiguity is high, expecta-
tions are weak and surprise (which results from a violation of expectations)
is unlikely. This situation characterizes the off-diagonal cells in the
figure and accounts for our labeling these "little surprise.”

Although our conceptual scheme makes clear when surprise is likely to
occur, it cannot handle the variety of possible reactions it can engender.
Por example, when data are not good enough, it is possible to reduce the
credibility of the source (e.g., the cameras were broken), synthesize the

hypotheses (there were two bank robbers, one white and the other black), or
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othexvise make sense of the data by changing the story (e.g., there were two
bank robberies on successive days). On fhe other hand, when data are too
good, inferences of fraud, collusion, and the like, are possible (see, e.g.,
Kamin, 1974 on Burt's twin data; Bishop, Fienberg, & Holland, 1975, on
Mendel's pea experiments)., An interesting aspect of such inferences is that
the surface meaning of the data can suggest the opposite conclusion; e.g.,
consider someons who “"protesteth too much,” or a suspect who was "framed" for
a crime. 1Indeed, this is implied by ocur model. Specifically, consider the
case of totally unreliable data which imply © = 1 (see equation (6)). 1In
this case,

stp,) = 1 - pi (11)

Thus, as p, increases, S(PA) decreases. More generally, as ©
increases, it will reach a point, conditional on p, and A, where the

evidence for a hypothesis will start to be counted against it.

Ambiguity and Risk

Although the importance of ambiguity for understanding risk has been

avident since Ellsberg's original article, its omission from the voluminous

. literature on risk is puzzling. One reason may be the reliance on the

explicit lottery, with stated payoffs and probabilities, for representing
risky choice. 1Indeed, as Lopes (1983) has noted,

The simple, static lottery or gamble is as indispensable to

oy research on risk as is the fruitfly to genetics. The reason
is obvious; lotteries, like fruitflies, provide a simplified
laboratory model of the real world, one that displays its
essential characteristics while allowing for the manipulation
and control of important experimental variables. (1983, p. 137)

;j It should be further noted that the explicit lottery has been of equal

importance to those interested in axiom systems and formal models of risk.

+
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¥hile explicit lotteries have been, and continue to be, useful for R
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studying risk, the ambiguities surrounding real world processes in domains
such as nuclear power, environmental safety, and the like, accentuate the
incomplete nature of such representations. Indeed, Ellsberg pointed out the

particular importance of ambiguity in understanding people’s reactions to new

technologies (also see, Edwards & von Winterfeldt, 1982, for a historical look

at reactions to earlier technological innovations). In any event, the neglect

of ambiguity in theories of risk is slowly giving way to interest at both the

formal-axiomatic level (e.g., Fishburn, 1983a, 1983b; Gardenfors & Sahlin,

1982; 1983; Morris, 1983) as well as the psychological level (Lopes, 1983).
Our model of inference under ambiguity has several implications for

descriptive models of risky choice. Pirst, since the £ parameter can be

related to the desirability of outcomes, the model implies a form of utility x
probability interaction. Moreover, experiment 4 provides direct evidence for
this interaction. However, the utility x probability interaction only has an
effect in the presence of ambiguity, i.e., when 0 > 0. Thus, whereasgs the

-, bilinear assumption may be appropriate for models that exclude the effects of
' ambiguity (e.g., Kahneman & Tversky, 1979), it is not clear that this
assumption can be maintained when ambiquity prevails. Second, both our model
- and data show that the net effect of the adjustment process (i.e., k) varies
in magnitude with the level of p,. Thus, theories of inference that weight
probabilities according to some “reliability" factor (e.q., G;rdentors &
Sahlin, 1982) need to consider this interaction explicitly to achieve

N descriptive realism. Third, the model highlights the difficulty of inferring

underlying attitudes toward risk from choices made in ambiguous circumstances. =
For example, a person buying insurance against a potential loss that is

contingent on a small, ambiguous probability might appear risk averse;

however, the same person could appear to be risk-seeking if the probability RO
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o were larger (cf. experiment 4). Viewed from the framework of expected utility
s theory, such behavior would imply an inconsistent utility function. However,

this need not be the case since the apparent changes in risk attitude could

result from the effects of ambiguity. At the very least, our model provides a

way of analyzing the sources of such seemingly inconsistent hehavior., As

;ﬂ Hogarth and Kunreuther (1984) point out, scholars have often attempted to

resolve anomalous choice patterns by considering different forms of utility

functions. On the other hand, transformations of probabilities have received

far less formal attention (for an exception, see Karmarkar, 1978). PFinally,

whereas our model does not explicate all aspects of ambiguous choice, it does

suggest exciting possibilities for further work in this area.

:if Extensions to Multiple Sources and Time Periods

To examine inferences under ambiguity in depth, we have restricted

ocurselves to how evidence from a single source is evaluated at one point in

time. However, consider the more realistic situation where decision makers

receive information from multiple source-types (including base rates) over

multiple time periods. The aggregation of information over source-types and

}3 time can be conceptualized by an "evidence matrix" that has source-types for

rows and time periods for columns. Such a matrix is shown in Figure 6. The

Ingert Figure 6 about here

entries in each cell of the matrix reflect the conflicting evidence received

from a source-type in that period. The matrix provides a simple yet powerful

way to look at a wide variety of inference problems. In particular, by

y focusing on source-types (rows) or time periods (columns), one can look at the

combining of information eilther longitudinally, cross-sectionally, or both.

Purthermore, the issues of reliability and ambiguity become quite complex here
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since there can be differential source reliability, varying numbers of reports

o

per source, and the sources may not be "independent.” While the challenge of

understanding how people incorporate such factors into their judgments is

.
w
I
-
h
.
[

formidable, the complexity of inferences in real world settings requires that

attention be paid to these issues.

CONCLUSION

In considering the role of ambiguity and uncertainty in inferential
judgments, we have developed a quantitative model that accounts for much
existing data as well as our own experimental findings, Furthermore, we have
shown how this model relates to Keynes' idea of the weight of evidence, the
non-additivity of complementary probabilities, risky choice, and current work
on cognitive heuristics. Moreover, since inference involves "going beyond the
information given® (Bruner, 1957), an important way to do this is to con-
struct, via imagination, "what might have been” or "what might be." Such
constructions, whether the result of a cognitive simulation process as
proposed here, or more elaborate processes (as in resolving surprise), pose an
interesting and important trade-off for the organism. On the one hand, there

ares costs of investing in imagination; increased mental effort and the

discomfort that results from greater uncertainty. On the other hand, the
benefits of considering the world as it isn't, protects one from over-
confidence and its nonadaptive consequences. Thus, finding the appropriate
compromise between "what is" and "what might have been" (or, “"what might be"),

is central to inferences under ambigquity and unc. stainty.
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Tae Py = 0, 1 there is no ambiguity. Hence, the relation between p, :ﬁﬁ:
and S(p,) should be discontinuous. Indeed, the lack of ambiguity at the end _}
points provides a rationale for the discontinuity of the decision-weight ;iiﬁ

h_o-—d

function and this implies the "certainty effect" of prospect theory (i.e., the
value of sure gambles is heightened either positively or negatively).

2 listing of the program is available from the authors.
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APPENDIX A

This appendix considers the effects of different assumptions concerning

the weights given in imagination to values of p greater and smaller than

Pp+ In equation (4), differential weighting is achieved by the § parameter;

. i.e., kg =81 -p) and k= epi. However, one could also consider linear .
. weighting schemes where the weights given to @p, and 6(1 - p,) sum to one ;
b2 -
i (i.e., a weighted averaging process), or where the weights do not sum to
L PR
: one. For the former, let e
> SRS
. k -k =6w()l -p ) ~0(1 - w)p S
I s A A (A1) s
F - 0w - p,)
vhera 0< w< 1 is the relative weight given to greater values.
‘l:’. Substituting (A.1) into equation (6), we obtain,
:;. s, (pa) =p, * 0 (w - pA) (A.2) ’
Z':' where, S1 (pA) is used to denote alternative model 1. Note that in this j::
nodel, s1 (pA) is regressive with respect to p. Although this model has
- appealing features, it is easy to show that it does not capture some aspects ::::i:
of our model and data. Specifically, it always predicts additivity of :'_:',:':'
judgments of complementary events, i.e., b
- S1(py) + 5,01 = py) =py +8 (w-py) + (1 -p) RN
-:‘. (A.3 ) ;.._7:.
+06 {(1 -w) - (1 = pA)] = 1 et
-
However, non-additivity will occur if the weights accorded to @(1 - pA) ..-_'.'_-:
and Op, do not sum to one. A special case of this model, which we denote ;:.::3:
sz(pl), and which is similar to the 3(93) model used in the paper, is one ::-fjf:
? .
N wvhere, o
R ::::.:;
"y c..::-.
‘ N
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kg - k. =01 - pA) - empA (m > 0) (A.4)

This yields, .
sz(ph) =p, *+ o {1 - P, - mpAl (A.5)

such that the additivity conditions are,

sztpA) + 52(1 - pk) =P+ 91 - Py - mpAI + (1 - PA’ + 0 (pA - m(t-pA)]

=1+ 0 (1-m) (A.6)

Thus, for m > 1, the model predicts sub-additivity; for m = 1,

[ additivity; and for m < 1, super-additivity. The difference between

B sz(pA) and S(pA) is that the former predicts a constant amount of non-
additivity irrespective of the value of p,. 1In the S(p,) model, the level

{f of p, affects the amount of additivity. This is shown in equation (7),
which is reproduced here for convanience,

- S(p) +8(1 =p) =148 (1 -p8-(1-pB (A.7)

o A A A A
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Crew Station Design
NAVAIR 5313

Washington, D. C. 20361

Mr. Philip Andrews

Naval Sea Systems Command
NAVSEA 61R

Washington, D. C. 20362

Commander

Naval Electronics Systems Command
Human Factors Engineering Branch
Code 81323

Washington, D. C. 20360

Mr. Herb Marks

Naval Surface Weapons Center
NSWC/DL

Code N-32

Dahlgren, VA 22448

Mr. Milon Essoglou

Naval Facilities Engineering Coomand

R&D Plans and Programs
Code 03T

Hoffman Building II
Alexandria, VA 22332

CAPT Robert Biersner

Naval Biodynamics Laboratory
Michoud Station

Box 29407

New Orleans, LA 70189

Dr. Arthur Bachrach

Behavioral Sciences Department
Naval Medical Research Institute
Bethesda, MD 20014

Dr. George Moeller

Human Factors Engineering Branch
Submarine Medical Research Ladb
Naval Submarine Base

Groton, CT 06340
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Department of the Navy

Head

Asrospace Psychology Department
Code LS

Naval Aerospace Medical Research Lab
Pensacola, FL 32508

Commanding Officer
Naval Health Research Center
San Diego, CA 92152

Dr. Jerry Tobias

Auditory Research Branch
Submarine Medical Research Lab
Naval Submarine Base

Groton, CT 06340

Navy Personnel Research and
Development Center
Planning & Appraisal Division

San Diego, CA 92152

Dr. Robert Blanchard :
Navy Personnel Research and
Development Center
Command and Support Systems

San Diego, CA 92152

CDR J. Funaro

Human Factors Engineering Division
Naval Air Development Center
Warminster, PA 18974

Mrz. ‘Stephen Merriman

Human Factors Engineering Division
Naval Air Development Center
Warminster, PA 18974

Mr. Jeffray Grossman
Human Factors Branch
Code 3152

Naval Weapons Center
China Lake, CA 93555

Human Factors Engineering Branch
Code 4023

Pacific Missile Test Center
Point Mugu, CA 93042
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Department of the Navy

Dean of the Academic Departments
U. S. Naval Academy
Annapolis, MD 21402

Dr. W. Moroney

Naval Air Development Center
Code 602
Warminster, PA 18974

Human Factor Engineering Branch
Naval Ship Research and Developament
Center, Annapolis Division
Annapolis, MD 21402

Dr. Harry Crisp

Code N 51

Combat Systems Department
Naval Surface Weapons Center
Dahlgren, VA 22448

Mr. John Quirk

Naval Coastal Systems Laboratory
Code 712 )
Panama City, FL 32401

Department of the Army

Dr. Edgar M. Johmnson
Technical Director

U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Technical Director
U, S. Army Human Engineering Labs
Aberdeen Proving Ground, MD 21005

Director, Organizations and
Systems Research Laboratory
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandris, VA 22333

Mr. J. Barber
HQS, Department of the Army
DAPE-MBR

Washington, D.C. 20310
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Department of the Air Force

Dr. Kenneth R, Boff
AF AMRL/HE
Wright-Patterson AFB, OH 4543)

U.S. Air Force Office of
Scientific Research

Life Science Directorate, NL

Bolling Air Force Base

Washington, D.C. 20332

AFHRL/LRS TDC
Actn: Susan Ewing
Wright-Patterson AFB, OH 45433

Chief, Systems Engineering Branch
Human Engineering Division

USAF AMRL/HES

Wright-Patterson AFB, OH 45433

Dr. Earl Alluisi

Chief Scientist

AFHRL/CCN

Brooks Air Force Base, TX 78235

Dr. R. K. Dismukes

Associate Director for Life Sciences
AFOSR

Bolling AFB

Washington, D.C. 20332

Foreign Addresses

Dr. Kenneth Cardner

Applied Psychology Unit
Admiralty Marine Tech. Estab.
Teddington, Middlesex TW1ll OLN
England

Human Factors
P.0. Box 1085
Station B
Rexdale, Ontario
Canada M9V 2B3
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Foreign Addresses

Dr. A. D. Baddeley

Director, Applied Psychology Unit
Medical Research Council

15 Chaucer Road

Cambridge, CB2 2EF England

Other Government Agencies

Defense Technical Information Center
Cameron Station, Bldg. 5
Alexandria, VA 22314 (12 copies)

Dr. Clinton Kelly

Defense Advanced Research Projects
Agency

1400 Wilson Blvd.

Arlington, VA 22209

Dr. M. C. Montemerlo

Human Factors & Simulation
Technology, RIE-6

NASA HQS

Washington, D.C. 20546

Other Organizations

Ms. Denise Benel
Essex Corporation

333 N. Fairfax Street
Alexandria, VA 22314

Dr. Andrew P. Sage
First American Prof. of Info. Tech.
Assoc. V.P., for Academic Affairs
George Masbn University
4400 University Drive
Fairfax, VA 22030
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Other Organizations

Dr. Robert R. Mackie

Human Factors Research Division
Canyon Research Group

$775 Dawson Avenue

Goleta, CA 93017

Dr. Amos Tversky

Dept. of Psychology
Stanford University
Stanford, CA 94305

Dr. H. Mcl. Parsons
Essex Corporation

333 N. Fairfax St.
Alexandria, VA 22314

Dr. Jesse Orlansky

Institute for Defense Analyses .
1801 N. Beauregard Street
Alexandria, VA 22043

Dr. J. 0. Chinnis, Jr.

Decision Science Consortium, Inc.
7700 Leesburg Pike

Suite 421

Falls Church, VA 22043

Dr. T. B. Sheridan

Dept. of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Dr. Paul E. Lehner

PAR Technology Corp.
Seneca Plaza, Route 5
New Hartford, NY 13413

Dr. Paul Slovic
Decision Research
1201 Oak Street
Eugene, OR 97401

DR T T P S Y L AL M S T R

e A e e At A e

.......

.....
........

.......

64

Other Organizations

Dz. Harry Snyder

Dept. of Industrial Engineering

Virginia Polytechnic Institute
and State University

Blacksburg, VA 24061

Dr. Stanley Deutsch

NAS-National Research Council (COHF)
2101 Constitution Avenue, N.W.
Washington, D.C. 20418

Dr. Amos Freedy
Perceptronics, Inc.

6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Robert Fox

Dept. of Psychology
Vanderbilt University
Nashville, TN 37240

Dr. Meredith P. Crawford

American Psychological Association
Office of Educational Affairs

1200 17th Street, N.W,

Washington, D.C. 20036

Dr. Deborah Boehm-Davis
Dept. of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Howard E. Clark

NAS-NRC

Commission on Engrg. & Tech., Systems
2101 Consticution Ave., N.W.
Washington, D.C. 20418
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Other Organizations

Dr. Charles Gettys
Department of Psychology
University of Oklahoma
455 West Lindsey

Worman, OK 73069

Dr. Keaneth Hammond

Inscitute of Behavioral Science
Uaiversity of Colorado

Boulder, CO 80309

Dr. James H. Howard, Jr.
Department of Psychology
Catholic University

Washingeon, D, C. 20064

Dr. William Howell
Department of Psychology
Rice Universitcy

Houston, TX 77001

Dr. Christopher Wickens
Depacttment of Psychology
Uaniversity of Illinois
Urbana, IL 61801

Mr, Bdward M. Connelly

Perforamance Measurement
Associates, Inc.

1909 Hull Road

Vienna, VA 22180

Professor Michael Athans

Room 35-406

Massachusetts Institute of
Technology

Cambridge, MA 02139

Dr. Edward R. Jones

Chief, Human Pactors Engineering
McDonnell-Dougias Astronautics Co.
St. Louis Division

Box 516 ’

St. Louis, MO 63166
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Other Organizations

Dr. Babur M. Pulat

Department of Industrial Engineering
North Carolina A&T State University

Greensboro, NC 27411

Dr. Lola Lopes

Information Sciences Division
Deparcment of Psychology
University of Wisconsin
Madison, WI 53706

National Security Agency
ATTN: N-32, Marie Goldberg
9800 Savage Road

Ft. Meade, MD 20722

Dr. Stanley N. Roscoe

New Mexico State University
Box 5095

Las Cruces, NM 88003 -

Mr. Joseph G. Wohl .
Alphatech, Inc.

3 New England Executive Park
Burlington, MA 01803

Dr. Marvin Cohen

Decision Science Consortium, Inc.
Suite 721

7700 Leesburg Pike

Falls Church, VA 22043

Dr. Robert Wherry
Analyties, Inc,

2500 Maryland Road
Willow Grove, PA 19090

Dr. Will{am R. Uctal
Institute for Social Research
University of Michigan

Ann Arbor, MI 48109

Dr. William B. Rouse

School of Industrial and Systems
Engineering

Ceorgia Institute of Technology -
Atlanta, GA 3033
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Other Organizations

F Dr. Richard Pew

- Bolt Beranek & Newman, Inc.
- 50 Moulton Street

b= - Cambridge, MA 02238

Dr. Douglas Towne

n University of Southern California
- Behavioral Technology Lab

- 3716 S. Hope Street

- Los Angeles, CA 90007

Dr. David J. Getty

Bolt Beranek & Newman, Inc.
50 Moulton street
Cambridge, MA 02238

Dr. John Payne

Graduate School of Business
Administration

Duke University

e Durham, NC 27706

- Dr. Baruch Fischhoff
~ Decision Research
1201 Oak Street
Eugene, OR 97401

Dr. Alan Morse

e Intelligent Software Systems Inc.
o 160 01d Farm Road

- Amherst, MA 01002

- Dr. J. Miller

}; Florida Institute of Oceanography
. University of South Florida

. St. Petersburg, FL 33701







